Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
32
32
label
class label
1k classes
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
0tench, Tinca tinca
End of preview. Expand in Data Studio

ImageNet SDXL Quantized

This repository provides the ImageNet-1K dataset pre-encoded with the Stable Diffusion XL VAE encoder and quantized to uint8, allowing for faster training of latent diffusion models by eliminating the need for on-the-fly encoding.

Key Features

  • Reduces quantization error by 2dB PSNR compared to a linear encoding scheme
  • Provided in both 256 and 512 resolutions
  • Compatible with NumPy, JAX, and PyTorch

Usage

Loading the dataset

The encoded and quantized images are written as PNG files, and can be loaded without any special tools.

>>> from datasets import load_dataset
>>> ds = load_dataset("jon-kyl/imagenet-sdxl-quantized", "256")  # or "512"
>>> ds
DatasetDict({
    train: Dataset({
        features: ['image', 'label'],
        num_rows: 1281167
    })
    validation: Dataset({
        features: ['image', 'label'],
        num_rows: 50000
    })
    test: Dataset({
        features: ['image', 'label'],
        num_rows: 100000
    })
})
>>> ds["train"][0]  # SDXL encoder reduces image size by factor of 8.
{'image': <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=32x32>,
 'label': 0}

Dequantization

To dequantize the data, use the quantization module:

>>> from quantization import optimized_for_sdxl as q
>>> ds = ds.with_format("numpy")  # or "jax", "torch" 
>>> for split in dataset:
...     for example in dataset[split]:
...         # `dequantize` infers the backend and imports it lazily.
...         dequantized = q.dequantize(example["image"])

Decoding with SDXL VAE

We provide a shorthand for the JAX implementation of the SDXL VAE:

import jax
from encode import load_decoder

# load_decoder() returns a plain function of 1 argument. 
decoder = jax.jit(load_decoder())

# The function accepts jax or numpy arrays. 
decoded_jax = decoder(dequantized)

Important: When using other decoder implementations, remember to invert the SDXL scaling_factor before decoding.

Details

Unlike other approaches, this implementation specifically minimizes quantization error as measured in image space by performing a grid search over saturating functions and scale factors.

Nonlinearities comparison

Our analysis shows that the CDF of the normal distribution (i.e., erf) with a scale factor of 0.7 provides optimal results at both 256×256 and 512×512 resolutions.

Scale sweep comparison

Encoding Process

  1. Preprocessing: Square crop along the long edge, then Lanczos resample to target size
  2. Encoding: Apply SDXL encoder
  3. Scaling: Multiply by SDXL scaling factor (0.13025) to roughly normalize variance
  4. Quantization:
    • Apply additional scale parameter (0.7)
    • Apply nonlinearity function (Normal CDF)
    • Quantize to 8 bits
def quantize(x: FloatArray) -> UInt8Array:
    """
    Pseudocode for quantization.
    """
    x = x * scale        # (-inf, inf)
    x = nonlinearity(x)  # [-1, 1)
    x = x * 128 + 128    # [0, 256)
    x = to_uint8(x)      # [0, 255]
    return x
Downloads last month
352