|
|
from abc import ABC, abstractmethod |
|
|
from dataclasses import dataclass |
|
|
from importlib import import_module |
|
|
from functools import wraps |
|
|
from typing import Any, Callable, TypeVar, TypedDict, get_type_hints, get_args |
|
|
|
|
|
T = TypeVar("T") |
|
|
F = TypeVar("F", bound=Callable) |
|
|
|
|
|
|
|
|
class Backend(ABC): |
|
|
"""Abstract backend interface for quantization operations.""" |
|
|
|
|
|
@abstractmethod |
|
|
def clip(self, x: T, min_val: float, max_val: float) -> T: ... |
|
|
|
|
|
@abstractmethod |
|
|
def abs(self, x: T) -> T: ... |
|
|
|
|
|
@abstractmethod |
|
|
def sign(self, x: T) -> T: ... |
|
|
|
|
|
@abstractmethod |
|
|
def log1p(self, x: T) -> T: ... |
|
|
|
|
|
@abstractmethod |
|
|
def tanh(self, x: T) -> T: ... |
|
|
|
|
|
@abstractmethod |
|
|
def atanh(self, x: T) -> T: ... |
|
|
|
|
|
@abstractmethod |
|
|
def sigmoid(self, x: T) -> T: ... |
|
|
|
|
|
@abstractmethod |
|
|
def logit(self, x: T) -> T: ... |
|
|
|
|
|
@abstractmethod |
|
|
def to_uint8(self, x: T) -> T: ... |
|
|
|
|
|
@abstractmethod |
|
|
def to_float32(self, x: T) -> T: ... |
|
|
|
|
|
@abstractmethod |
|
|
def normal_cdf(self, x: T) -> T: ... |
|
|
|
|
|
@abstractmethod |
|
|
def normal_ppf(self, x: T) -> T: ... |
|
|
|
|
|
|
|
|
class NumpyBackend(Backend): |
|
|
def __init__(self, numpy: str = "numpy", scipy: str = "scipy"): |
|
|
self.np = import_module(numpy) |
|
|
self.sp = import_module(scipy) |
|
|
|
|
|
def clip(self, x: T, min_val: float, max_val: float) -> T: |
|
|
return self.np.clip(x, min_val, max_val) |
|
|
|
|
|
def abs(self, x: T) -> T: |
|
|
return self.np.abs(x) |
|
|
|
|
|
def sign(self, x: T) -> T: |
|
|
return self.np.sign(x) |
|
|
|
|
|
def log1p(self, x: T) -> T: |
|
|
return self.np.log1p(x) |
|
|
|
|
|
def tanh(self, x: T) -> T: |
|
|
return self.np.tanh(x) |
|
|
|
|
|
def atanh(self, x: T) -> T: |
|
|
return self.np.arctanh(x) |
|
|
|
|
|
def sigmoid(self, x: T) -> T: |
|
|
return self.sp.special.expit(x) |
|
|
|
|
|
def logit(self, x: T) -> T: |
|
|
return self.sp.special.logit(x) |
|
|
|
|
|
def to_uint8(self, x: T) -> T: |
|
|
return self.np.uint8(x) |
|
|
|
|
|
def to_float32(self, x: T) -> T: |
|
|
return self.np.float32(x) |
|
|
|
|
|
def normal_cdf(self, x: T) -> T: |
|
|
return self.sp.stats.norm.cdf(x).astype(x.dtype) |
|
|
|
|
|
def normal_ppf(self, x: T) -> T: |
|
|
return self.sp.stats.norm.ppf(x).astype(x.dtype) |
|
|
|
|
|
|
|
|
class JaxBackend(NumpyBackend): |
|
|
def __init__(self): |
|
|
super().__init__(numpy="jax.numpy", scipy="jax.scipy") |
|
|
|
|
|
|
|
|
class TorchBackend(Backend): |
|
|
def __init__(self): |
|
|
self.torch = import_module("torch") |
|
|
self.normal = import_module("torch.distributions").Normal(0, 1) |
|
|
|
|
|
def clip(self, x: T, min_val: float, max_val: float) -> T: |
|
|
return self.torch.clamp(x, min_val, max_val) |
|
|
|
|
|
def abs(self, x: T) -> T: |
|
|
return self.torch.abs(x) |
|
|
|
|
|
def sign(self, x: T) -> T: |
|
|
return self.torch.sign(x) |
|
|
|
|
|
def log1p(self, x: T) -> T: |
|
|
if isinstance(x, (int, float)): |
|
|
|
|
|
x = self.torch.full((), x, dtype=self.torch.float32) |
|
|
return self.torch.log1p(x) |
|
|
|
|
|
def tanh(self, x: T) -> T: |
|
|
return self.torch.tanh(x) |
|
|
|
|
|
def atanh(self, x: T) -> T: |
|
|
return self.torch.atanh(x) |
|
|
|
|
|
def sigmoid(self, x: T) -> T: |
|
|
return self.torch.sigmoid(x) |
|
|
|
|
|
def logit(self, x: T) -> T: |
|
|
return self.torch.logit(x) |
|
|
|
|
|
def to_uint8(self, x: T) -> T: |
|
|
return x.to(self.torch.uint8) |
|
|
|
|
|
def to_float32(self, x: T) -> T: |
|
|
return x.to(self.torch.float32) |
|
|
|
|
|
def normal_cdf(self, x: T) -> T: |
|
|
return self.normal.cdf(x) |
|
|
|
|
|
def normal_ppf(self, x: T) -> T: |
|
|
return self.normal.icdf(x) |
|
|
|
|
|
|
|
|
class ClassNameToBackendSingletons(TypedDict): |
|
|
ArrayImpl: JaxBackend | None |
|
|
DynamicJaxprTracer: JaxBackend | None |
|
|
ndarray: NumpyBackend | None |
|
|
Tensor: TorchBackend | None |
|
|
|
|
|
|
|
|
_backend_singletons: ClassNameToBackendSingletons = { |
|
|
"ArrayImpl": None, |
|
|
"DynamicJaxprTracer": None, |
|
|
"ndarray": None, |
|
|
"Tensor": None, |
|
|
} |
|
|
|
|
|
|
|
|
def make_backend(classname: str) -> Backend: |
|
|
backend_hints = get_type_hints(ClassNameToBackendSingletons) |
|
|
backend_class = get_args(backend_hints[classname])[0] |
|
|
return backend_class() |
|
|
|
|
|
|
|
|
def get_backend(x: Any) -> Backend: |
|
|
""" |
|
|
Get the appropriate backend based on the type of x. |
|
|
Lazily imports the backend modules. |
|
|
""" |
|
|
classname = x.__class__.__name__ |
|
|
try: |
|
|
backend = _backend_singletons[classname] |
|
|
except KeyError as exc: |
|
|
raise NotImplementedError(f"backend for {type(x)} not implemented") from exc |
|
|
if backend is None: |
|
|
backend = make_backend(classname) |
|
|
_backend_singletons[classname] = backend |
|
|
return backend |
|
|
|
|
|
|
|
|
def with_backend(func: F) -> F: |
|
|
""" |
|
|
Decorator that extracts the backend from the first argument |
|
|
and passes it as a second argument to the wrapped function. |
|
|
""" |
|
|
@wraps(func) |
|
|
def wrapper(self: Any, x: T) -> Any: |
|
|
backend = get_backend(x) |
|
|
return func(self, x, backend) |
|
|
|
|
|
return wrapper |
|
|
|
|
|
|
|
|
@dataclass(frozen=True, kw_only=True) |
|
|
class QuantizationType(ABC): |
|
|
scale: float = 1.0 |
|
|
|
|
|
@abstractmethod |
|
|
def nonlinearity(self, x: T, backend: Backend) -> T: ... |
|
|
|
|
|
@abstractmethod |
|
|
def inv_nonlinearity(self, x: T, backend: Backend) -> T: ... |
|
|
|
|
|
@with_backend |
|
|
def quantize(self, x: T, backend: Backend) -> T: |
|
|
x = x * self.scale |
|
|
x = self.nonlinearity(x) |
|
|
x = x * 128 + 128 |
|
|
x = backend.to_uint8(x) |
|
|
return x |
|
|
|
|
|
@with_backend |
|
|
def dequantize(self, x: T, backend: Backend) -> T: |
|
|
x = backend.to_float32(x) |
|
|
x = x + 0.5 |
|
|
x = x / 128 - 1 |
|
|
x = self.inv_nonlinearity(x) |
|
|
x = x / self.scale |
|
|
return x |
|
|
|
|
|
|
|
|
def descendents(cls: type) -> set[type]: |
|
|
"""Gets all subclasses of the given class recursively.""" |
|
|
return set(cls.__subclasses__()).union(*map(descendents, cls.__subclasses__())) |
|
|
|
|
|
|
|
|
class Normal(QuantizationType): |
|
|
|
|
|
@with_backend |
|
|
def nonlinearity(self, x: T, backend: Backend) -> T: |
|
|
return backend.normal_cdf(x) * 2 - 1 |
|
|
|
|
|
@with_backend |
|
|
def inv_nonlinearity(self, x: T, backend: Backend) -> T: |
|
|
return backend.normal_ppf((x + 1) / 2) |
|
|
|
|
|
|
|
|
class Linear(QuantizationType): |
|
|
threshold: float = 3.5 |
|
|
eps: float = 1e-6 |
|
|
|
|
|
@with_backend |
|
|
def nonlinearity(self, x: T, backend: Backend) -> T: |
|
|
x = backend.clip(x, -self.threshold, self.threshold - self.eps) |
|
|
return x / self.threshold |
|
|
|
|
|
def inv_nonlinearity(self, x: T) -> T: |
|
|
return x * self.threshold |
|
|
|
|
|
|
|
|
class MuLaw(Linear): |
|
|
mu: float = 255. |
|
|
|
|
|
@with_backend |
|
|
def nonlinearity(self, x: T, backend: Backend) -> T: |
|
|
x = super().nonlinearity(x) |
|
|
x_abs = backend.abs(x) |
|
|
sign_x = backend.sign(x) |
|
|
log_mu = backend.log1p(self.mu) |
|
|
log_term = backend.log1p(self.mu * x_abs) / log_mu |
|
|
return sign_x * log_term |
|
|
|
|
|
@with_backend |
|
|
def inv_nonlinearity(self, x: T, backend: Backend) -> T: |
|
|
x_abs = backend.abs(x) |
|
|
sign_x = backend.sign(x) |
|
|
numerator = (1 + self.mu) ** x_abs - 1 |
|
|
x = sign_x * numerator / self.mu |
|
|
return super().inv_nonlinearity(x) |
|
|
|
|
|
|
|
|
class Tanh(QuantizationType): |
|
|
|
|
|
@with_backend |
|
|
def nonlinearity(self, x: T, backend: Backend) -> T: |
|
|
return backend.tanh(x) |
|
|
|
|
|
@with_backend |
|
|
def inv_nonlinearity(self, x: T, backend: Backend) -> T: |
|
|
return backend.atanh(x) |
|
|
|
|
|
|
|
|
class Sigmoid(QuantizationType): |
|
|
|
|
|
@with_backend |
|
|
def nonlinearity(self, x: T, backend: Backend) -> T: |
|
|
return backend.sigmoid(x) * 2 - 1 |
|
|
|
|
|
@with_backend |
|
|
def inv_nonlinearity(self, x: T, backend: Backend) -> T: |
|
|
return backend.logit((x + 1) / 2) |
|
|
|
|
|
|
|
|
optimized_for_sdxl = Normal(scale=0.7) |
|
|
quantization_types = tuple(sorted(list(descendents(QuantizationType)), key=lambda q: q.__name__)) |
|
|
|
|
|
|
|
|
__all__ = [ |
|
|
"QuantizationType", |
|
|
"Normal", |
|
|
"Linear", |
|
|
"MuLaw", |
|
|
"Tanh", |
|
|
"Sigmoid", |
|
|
"optimized_for_sdxl", |
|
|
"quantization_types", |
|
|
] |
|
|
|