LandGPT
This repository contains LandGPT-8B and the corresponding model inference code.
If you use this model, please pay attention to our work: LandGPT: A Multimodal Large Language Model for Parcel-Level Land Use Classification with Multi-Source Data
To reproduce the main contributions of the paper, please download this model and configure the model runtime library according to pip install lmdeploy>=0.5.3.
In view of the rapid development of large language model-related technologies, some existing libraries have encountered conflicts. We recommend using
torch 2.1.0
transformers 4.37.2
flash-attn 2.3.6
lmdeploy 0.5.3
to avoid related dependency conflicts.
In addition, a proper JSONL file is required as an image index to feed into the model. The code for creating this JSONL file has been open-sourced at https://doi.org/10.6084/m9.figshare.28143191
Assuming you have set up the runtime environment and created the JSONL file, please run:
python true_pre_2level.py
This will launch the model inference.
We recommend using a computing card with at least 24GB of VRAM for model inference, as insufficient VRAM may affect the inference quality.
We will introduce a more comprehensive and convenient model reproduction method in the next model release. Please stay tuned to our work! For demonstration videos related to LandGPT, please refer to: https://urbancomp.net/archives/landgpt-demonstration
LandGPT
此仓库为LandGPT-8B和相应的模型推理代码
如使用此模型,请关注我们的工作:LandGPT: A Multimodal Large Language Model for Parcel-Level Land Use Classification with Multi-Source Data
如复现文章主要工作,请下载此模型,并根据 pip install lmdeploy>=0.5.3配置模型运行库。
鉴于当前大语言模型相关技术发展迅速,现有部分库出现了冲突。我们建议使用
torch 2.1.0
transformers 4.37.2
flash-attn 2.3.6
lmdeploy 0.5.3
来避免相关依赖冲突。
此外,还需要合适的jsonl文件作为图像索引送入模型,制作此jsonl文件的代码已经开源在https://doi.org/10.6084/m9.figshare.28143191。
假设你已经配置好了运行环境,并创建好了jsonl文件,请运行:
python true_pre_2level.py
即可启动模型推理。
我们建议使用至少24GB显存的计算卡来进行模型推理,过低的显存可能会影响推理质量。
我们会在下个模型推出更加全面和更加便捷的模型复现方式,请持续关注我们的工作!LandGPT相关的演示视频可参见:https://urbancomp.net/archives/landgpt-demonstration
如果出现通信问题,可以设置export HF_ENDPOINT=https://hf-mirror.com来获取镜像模型资源。
欢迎关注我们的工作!下一代模型即将到来~
@article{zhu2025landgpt,
title={LandGPT: a multimodal large language model for parcel-level land use classification with multi-source data},
author={Zhu, Geyuan and Tang, Mi and Ma, Yueheng and Hu, Zhihui and Yu, Chenglong and Zhang, Xiang and Hu, Huanjun and Guan, Qingfeng and Yao, Yao},
journal={International Journal of Geographical Information Science},
pages={1--24},
year={2025},
publisher={Taylor \& Francis}
}
- Downloads last month
- 14