test-biobert-finetuned-ner-medmentions
This model is a fine-tuned version of dmis-lab/biobert-v1.1 on the medmentions dataset. It achieves the following results on the evaluation set:
- Loss: 1.0704
- Precision: 0.5926
- Recall: 0.6403
- F1: 0.6156
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|---|---|---|---|---|---|---|
| 0.8861 | 1.0 | 330 | 0.5810 | 0.5413 | 0.5217 | 0.5313 |
| 0.5143 | 2.0 | 660 | 0.5206 | 0.5377 | 0.6076 | 0.5705 |
| 0.4166 | 3.0 | 990 | 0.5114 | 0.5639 | 0.6173 | 0.5894 |
| 0.3444 | 4.0 | 1320 | 0.5223 | 0.5780 | 0.6301 | 0.6029 |
| 0.2877 | 5.0 | 1650 | 0.5433 | 0.5727 | 0.6396 | 0.6043 |
| 0.24 | 6.0 | 1980 | 0.5703 | 0.5989 | 0.6287 | 0.6134 |
| 0.2021 | 7.0 | 2310 | 0.6136 | 0.5731 | 0.6354 | 0.6027 |
| 0.1716 | 8.0 | 2640 | 0.6271 | 0.5924 | 0.6298 | 0.6105 |
| 0.1469 | 9.0 | 2970 | 0.6589 | 0.5857 | 0.6296 | 0.6068 |
| 0.125 | 10.0 | 3300 | 0.7028 | 0.5856 | 0.6355 | 0.6095 |
| 0.1076 | 11.0 | 3630 | 0.7385 | 0.5862 | 0.6378 | 0.6109 |
| 0.0942 | 12.0 | 3960 | 0.7678 | 0.5911 | 0.6348 | 0.6122 |
| 0.0817 | 13.0 | 4290 | 0.7819 | 0.5900 | 0.6334 | 0.6110 |
| 0.0718 | 14.0 | 4620 | 0.8135 | 0.5837 | 0.6390 | 0.6101 |
| 0.0639 | 15.0 | 4950 | 0.8489 | 0.5906 | 0.6339 | 0.6115 |
| 0.0566 | 16.0 | 5280 | 0.8729 | 0.5819 | 0.6416 | 0.6103 |
| 0.0499 | 17.0 | 5610 | 0.8930 | 0.5876 | 0.6379 | 0.6117 |
| 0.0447 | 18.0 | 5940 | 0.9162 | 0.5895 | 0.6383 | 0.6129 |
| 0.0403 | 19.0 | 6270 | 0.9366 | 0.5925 | 0.6340 | 0.6126 |
| 0.0365 | 20.0 | 6600 | 0.9515 | 0.5918 | 0.6345 | 0.6124 |
| 0.0331 | 21.0 | 6930 | 0.9742 | 0.5879 | 0.6393 | 0.6125 |
| 0.03 | 22.0 | 7260 | 0.9920 | 0.5860 | 0.6375 | 0.6107 |
| 0.0277 | 23.0 | 7590 | 1.0081 | 0.5916 | 0.6389 | 0.6143 |
| 0.025 | 24.0 | 7920 | 1.0272 | 0.5887 | 0.6370 | 0.6119 |
| 0.0232 | 25.0 | 8250 | 1.0267 | 0.5959 | 0.6325 | 0.6137 |
| 0.0216 | 26.0 | 8580 | 1.0528 | 0.5907 | 0.6382 | 0.6135 |
| 0.0209 | 27.0 | 8910 | 1.0533 | 0.5925 | 0.6385 | 0.6146 |
| 0.0195 | 28.0 | 9240 | 1.0617 | 0.5913 | 0.6398 | 0.6146 |
| 0.0186 | 29.0 | 9570 | 1.0668 | 0.5936 | 0.6379 | 0.6150 |
| 0.018 | 30.0 | 9900 | 1.0704 | 0.5926 | 0.6403 | 0.6156 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 38
Model tree for cp-gustavo/test-biobert-finetuned-ner-medmentions
Base model
dmis-lab/biobert-v1.1Evaluation results
- Precision on medmentionsvalidation set self-reported0.593
- Recall on medmentionsvalidation set self-reported0.640
- F1 on medmentionsvalidation set self-reported0.616