1f133c773edd97e29a2555290554c261

This model is a fine-tuned version of google-bert/bert-large-uncased on the nyu-mll/glue [mrpc] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7872
  • Data Size: 1.0
  • Epoch Runtime: 14.2633
  • Accuracy: 0.8078
  • F1 Macro: 0.7655
  • Rouge1: 0.8078
  • Rouge2: 0.0
  • Rougel: 0.8078
  • Rougelsum: 0.8081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.6632 0 1.8926 0.6621 0.4017 0.6627 0.0 0.6621 0.6621
No log 1 114 0.6403 0.0078 2.8475 0.6598 0.4104 0.6604 0.0 0.6592 0.6592
No log 2 228 0.6440 0.0156 2.4447 0.6651 0.3994 0.6657 0.0 0.6645 0.6651
No log 3 342 0.6271 0.0312 2.9577 0.6651 0.3994 0.6657 0.0 0.6645 0.6651
0.0204 4 456 0.6055 0.0625 3.8269 0.6881 0.5313 0.6884 0.0 0.6881 0.6875
0.0204 5 570 0.6103 0.125 4.5648 0.6798 0.4580 0.6798 0.0 0.6798 0.6798
0.0204 6 684 0.4979 0.25 6.2226 0.7429 0.7041 0.7429 0.0 0.7429 0.7435
0.1357 7 798 0.5088 0.5 8.7492 0.7241 0.7207 0.7235 0.0 0.7246 0.7241
0.3768 8.0 912 0.5057 1.0 15.1075 0.7423 0.6234 0.7429 0.0 0.7423 0.7423
0.2825 9.0 1026 0.4990 1.0 15.6576 0.8019 0.7445 0.8019 0.0 0.8019 0.8019
0.352 10.0 1140 0.4733 1.0 14.6845 0.8125 0.7768 0.8125 0.0 0.8125 0.8131
0.3582 11.0 1254 0.5672 1.0 14.2787 0.8219 0.8020 0.8219 0.0 0.8219 0.8219
0.3769 12.0 1368 0.8509 1.0 14.7253 0.8202 0.8009 0.8202 0.0 0.8208 0.8196
0.1844 13.0 1482 0.6314 1.0 14.6650 0.7860 0.7538 0.7860 0.0 0.7860 0.7854
0.198 14.0 1596 0.7872 1.0 14.2633 0.8078 0.7655 0.8078 0.0 0.8078 0.8081

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
3
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for contemmcm/1f133c773edd97e29a2555290554c261

Finetuned
(166)
this model

Evaluation results