1f133c773edd97e29a2555290554c261
This model is a fine-tuned version of google-bert/bert-large-uncased on the nyu-mll/glue [mrpc] dataset. It achieves the following results on the evaluation set:
- Loss: 0.7872
- Data Size: 1.0
- Epoch Runtime: 14.2633
- Accuracy: 0.8078
- F1 Macro: 0.7655
- Rouge1: 0.8078
- Rouge2: 0.0
- Rougel: 0.8078
- Rougelsum: 0.8081
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.6632 | 0 | 1.8926 | 0.6621 | 0.4017 | 0.6627 | 0.0 | 0.6621 | 0.6621 |
| No log | 1 | 114 | 0.6403 | 0.0078 | 2.8475 | 0.6598 | 0.4104 | 0.6604 | 0.0 | 0.6592 | 0.6592 |
| No log | 2 | 228 | 0.6440 | 0.0156 | 2.4447 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 3 | 342 | 0.6271 | 0.0312 | 2.9577 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.0204 | 4 | 456 | 0.6055 | 0.0625 | 3.8269 | 0.6881 | 0.5313 | 0.6884 | 0.0 | 0.6881 | 0.6875 |
| 0.0204 | 5 | 570 | 0.6103 | 0.125 | 4.5648 | 0.6798 | 0.4580 | 0.6798 | 0.0 | 0.6798 | 0.6798 |
| 0.0204 | 6 | 684 | 0.4979 | 0.25 | 6.2226 | 0.7429 | 0.7041 | 0.7429 | 0.0 | 0.7429 | 0.7435 |
| 0.1357 | 7 | 798 | 0.5088 | 0.5 | 8.7492 | 0.7241 | 0.7207 | 0.7235 | 0.0 | 0.7246 | 0.7241 |
| 0.3768 | 8.0 | 912 | 0.5057 | 1.0 | 15.1075 | 0.7423 | 0.6234 | 0.7429 | 0.0 | 0.7423 | 0.7423 |
| 0.2825 | 9.0 | 1026 | 0.4990 | 1.0 | 15.6576 | 0.8019 | 0.7445 | 0.8019 | 0.0 | 0.8019 | 0.8019 |
| 0.352 | 10.0 | 1140 | 0.4733 | 1.0 | 14.6845 | 0.8125 | 0.7768 | 0.8125 | 0.0 | 0.8125 | 0.8131 |
| 0.3582 | 11.0 | 1254 | 0.5672 | 1.0 | 14.2787 | 0.8219 | 0.8020 | 0.8219 | 0.0 | 0.8219 | 0.8219 |
| 0.3769 | 12.0 | 1368 | 0.8509 | 1.0 | 14.7253 | 0.8202 | 0.8009 | 0.8202 | 0.0 | 0.8208 | 0.8196 |
| 0.1844 | 13.0 | 1482 | 0.6314 | 1.0 | 14.6650 | 0.7860 | 0.7538 | 0.7860 | 0.0 | 0.7860 | 0.7854 |
| 0.198 | 14.0 | 1596 | 0.7872 | 1.0 | 14.2633 | 0.8078 | 0.7655 | 0.8078 | 0.0 | 0.8078 | 0.8081 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 3
Model tree for contemmcm/1f133c773edd97e29a2555290554c261
Base model
google-bert/bert-large-uncased