NBME DeBERTa v3 Fine-tuned Model


language: en license: apache-2.0 tags: - deberta - fine-tuning - nbme - medical - token-classification datasets: - nbme-dataset model_name: nbme-deberta-v3-finetuned widget: - text: "Patient reports chest pain and shortness of breath after medication."

This model is a fine-tuned version of microsoft/deberta-v3-base for the NBME clinical note scoring task.
It was trained on a subset of the NBME dataset to identify and classify relevant spans in patient notes.


🧠 Model Details

  • Base Model: microsoft/deberta-v3-base
  • Framework: PyTorch + Transformers
  • Task: Token classification (NER-style scoring)
  • Loss Function: BCEWithLogitsLoss
  • Optimizer: AdamW
  • Epochs: 5
  • Batch size: hyperparameters['batch_size']
  • Learning rate: hyperparameters['lr']

πŸ“Š Training Information

  • Training Dataset: NBME Clinical Notes Dataset
  • Train/Validation Split: 80/20
  • Validation Loss: ~0.0965
  • F1 Score: ~0.82

πŸ“ Files

File Description
nbme_full_model.pth Full fine-tuned model weights
nbme_full_model.pkl Pickle version for Python serialization
nbme_bert_v2.pth Early checkpoint version
README.md Model card file

πŸš€ How to Use

from transformers import AutoTokenizer
import torch
from your_model_file import CustomModel

tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-v3-base")
model = CustomModel(hyperparameters)
model.load_state_dict(torch.load("nbme_full_model.pth", map_location="cpu"))
model.eval()

text = "Patient reports severe headache after taking medication."
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
preds = torch.sigmoid(outputs)
print(preds)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for Shenkezs/nbme-deberta-v3-finetuned

Finetuned
(499)
this model

Space using Shenkezs/nbme-deberta-v3-finetuned 1