YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
π§ Fine-tuned LLaMA Model using QLoRA & LoRA (Supervised Fine-Tuning)
This model is a fine-tuned version of the model_name base model using QLoRA (Quantized Low-Rank Adaptation) for efficient and memory-friendly training. Fine-tuning was performed using the Hugging Face trl libraryβs SFTTrainer and peft (LoRA).
π Model Overview
- Base Model:
model_name - Fine-tuning Method: QLoRA + LoRA (PEFT)
- Task: Causal Language Modeling
- Quantization: 4-bit (bitsandbytes)
- Frameworks: Transformers, PEFT, TRL
π§ Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Henit007/Vivekanandao1_finetuned")
model = AutoModelForCausalLM.from_pretrained("Henit007/Vivekanandao1_finetuned", device_map="auto")
input_text = "Explain climate change in simple terms."
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support