Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/distiluse-base-multilingual-cased-v1 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| 0 |
|
| 1 |
|
| Label | Accuracy |
|---|---|
| all | 1.0 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Coño cuál juego de la violencia Henry,aquí la violencia viene de un solo lado,en El Tocuyo y Carora cazaron a esos muchachos como animales")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 30.0686 | 76 |
| Label | Training Sample Count |
|---|---|
| 0 | 122 |
| 1 | 53 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0018 | 1 | 0.408 | - |
| 0.0894 | 50 | 0.0144 | - |
| 0.1789 | 100 | 0.0002 | - |
| 0.2683 | 150 | 0.0 | - |
| 0.3578 | 200 | 0.0 | - |
| 0.4472 | 250 | 0.0 | - |
| 0.5367 | 300 | 0.0 | - |
| 0.6261 | 350 | 0.0 | - |
| 0.7156 | 400 | 0.0 | - |
| 0.8050 | 450 | 0.0 | - |
| 0.8945 | 500 | 0.0 | - |
| 0.9839 | 550 | 0.0 | - |
| 1.0733 | 600 | 0.0 | - |
| 1.1628 | 650 | 0.0 | - |
| 1.2522 | 700 | 0.0 | - |
| 1.3417 | 750 | 0.0 | - |
| 1.4311 | 800 | 0.0 | - |
| 1.5206 | 850 | 0.0 | - |
| 1.6100 | 900 | 0.0 | - |
| 1.6995 | 950 | 0.0 | - |
| 1.7889 | 1000 | 0.0 | - |
| 1.8784 | 1050 | 0.0 | - |
| 1.9678 | 1100 | 0.0 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}