SentenceTransformer based on intfloat/multilingual-e5-base
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("AhmedZaky1/arabic-e5-multilingual-finetuned-20250530")
sentences = [
'كيف يمكنني الترويج لموقعك الإلكتروني؟',
'ما هي أفضل طريقة للترويج لموقعك الإلكتروني؟',
'امرأة ترقص',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
sts17-arabic |
sts17-arabic-final |
| pearson_cosine |
0.8012 |
0.8012 |
| spearman_cosine |
0.803 |
0.8031 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 64
gradient_accumulation_steps: 4
learning_rate: 2e-05
warmup_ratio: 0.1
fp16: True
dataloader_drop_last: True
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 64
per_device_eval_batch_size: 8
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 4
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 3
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: True
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size: 0
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
sts17-arabic_spearman_cosine |
sts17-arabic-final_spearman_cosine |
| 0.0747 |
100 |
5.7187 |
- |
- |
- |
| 0.1494 |
200 |
1.199 |
- |
- |
- |
| 0.2240 |
300 |
1.0422 |
- |
- |
- |
| 0.2987 |
400 |
0.9514 |
- |
- |
- |
| 0.3734 |
500 |
0.9002 |
0.0478 |
0.8091 |
- |
| 0.4481 |
600 |
0.848 |
- |
- |
- |
| 0.5228 |
700 |
0.8298 |
- |
- |
- |
| 0.5975 |
800 |
0.7915 |
- |
- |
- |
| 0.6721 |
900 |
0.7906 |
- |
- |
- |
| 0.7468 |
1000 |
0.7534 |
0.0375 |
0.7950 |
- |
| 0.8215 |
1100 |
0.7384 |
- |
- |
- |
| 0.8962 |
1200 |
0.7252 |
- |
- |
- |
| 0.9709 |
1300 |
0.7311 |
- |
- |
- |
| 1.0456 |
1400 |
0.7006 |
- |
- |
- |
| 1.1202 |
1500 |
0.6611 |
0.0334 |
0.8026 |
- |
| 1.1949 |
1600 |
0.6279 |
- |
- |
- |
| 1.2696 |
1700 |
0.6072 |
- |
- |
- |
| 1.3443 |
1800 |
0.596 |
- |
- |
- |
| 1.4190 |
1900 |
0.5614 |
- |
- |
- |
| 1.4937 |
2000 |
0.5721 |
0.0300 |
0.8041 |
- |
| 1.5683 |
2100 |
0.5681 |
- |
- |
- |
| 1.6430 |
2200 |
0.5531 |
- |
- |
- |
| 1.7177 |
2300 |
0.5564 |
- |
- |
- |
| 1.7924 |
2400 |
0.564 |
- |
- |
- |
| 1.8671 |
2500 |
0.5395 |
0.0288 |
0.8066 |
- |
| 1.9417 |
2600 |
0.5729 |
- |
- |
- |
| 2.0164 |
2700 |
0.5436 |
- |
- |
- |
| 2.0911 |
2800 |
0.5365 |
- |
- |
- |
| 2.1658 |
2900 |
0.5087 |
- |
- |
- |
| 2.2405 |
3000 |
0.4991 |
0.0267 |
0.8009 |
- |
| 2.3152 |
3100 |
0.4761 |
- |
- |
- |
| 2.3898 |
3200 |
0.4711 |
- |
- |
- |
| 2.4645 |
3300 |
0.4795 |
- |
- |
- |
| 2.5392 |
3400 |
0.4732 |
- |
- |
- |
| 2.6139 |
3500 |
0.4735 |
0.0264 |
0.8029 |
- |
| 2.6886 |
3600 |
0.483 |
- |
- |
- |
| 2.7633 |
3700 |
0.4755 |
- |
- |
- |
| 2.8379 |
3800 |
0.4783 |
- |
- |
- |
| 2.9126 |
3900 |
0.4854 |
- |
- |
- |
| 2.9873 |
4000 |
0.4884 |
0.0260 |
0.8030 |
- |
| 3.0 |
4017 |
- |
- |
- |
0.8031 |
Framework Versions
- Python: 3.12.7
- Sentence Transformers: 3.3.1
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}