--- tags: - mllm - land-use - LLM --- # LandGPT **This repository contains LandGPT-8B and the corresponding model inference code.** **If you use this model, please pay attention to our work: LandGPT: A Multimodal Large Language Model for Parcel-Level Land Use Classification with Multi-Source Data** To reproduce the main contributions of the paper, please download this model and configure the model runtime library according to `pip install lmdeploy>=0.5.3`. In view of the rapid development of large language model-related technologies, some existing libraries have encountered conflicts. We recommend using ``` torch 2.1.0 transformers 4.37.2 flash-attn 2.3.6 lmdeploy 0.5.3 ``` to avoid related dependency conflicts. In addition, a proper JSONL file is required as an image index to feed into the model. The code for creating this JSONL file has been open-sourced at `https://doi.org/10.6084/m9.figshare.28143191` Assuming you have set up the runtime environment and created the JSONL file, please run: ``` python true_pre_2level.py ``` This will launch the model inference. We recommend using a computing card with at least 24GB of VRAM for model inference, as insufficient VRAM may affect the inference quality. We will introduce a more comprehensive and convenient model reproduction method in the next model release. Please stay tuned to our work! For demonstration videos related to LandGPT, please refer to: https://urbancomp.net/archives/landgpt-demonstration # LandGPT **此仓库为LandGPT-8B和相应的模型推理代码** **如使用此模型,请关注我们的工作:LandGPT: A Multimodal Large Language Model for Parcel-Level Land Use Classification with Multi-Source Data** 如复现文章主要工作,请下载此模型,并根据` pip install lmdeploy>=0.5.3`配置模型运行库。 鉴于当前大语言模型相关技术发展迅速,现有部分库出现了冲突。我们建议使用 ``` torch 2.1.0 transformers 4.37.2 flash-attn 2.3.6 lmdeploy 0.5.3 ``` 来避免相关依赖冲突。 此外,还需要合适的jsonl文件作为图像索引送入模型,制作此jsonl文件的代码已经开源在`https://doi.org/10.6084/m9.figshare.28143191`。 假设你已经配置好了运行环境,并创建好了jsonl文件,请运行: ``` python true_pre_2level.py ``` 即可启动模型推理。 我们建议使用至少24GB显存的计算卡来进行模型推理,过低的显存可能会影响推理质量。 我们会在下个模型推出更加全面和更加便捷的模型复现方式,请持续关注我们的工作!LandGPT相关的演示视频可参见:https://urbancomp.net/archives/landgpt-demonstration 如果出现通信问题,可以设置`export HF_ENDPOINT=https://hf-mirror.com`来获取镜像模型资源。 欢迎关注我们的工作!下一代模型即将到来~ ``` @article{zhu2025landgpt, title={LandGPT: a multimodal large language model for parcel-level land use classification with multi-source data}, author={Zhu, Geyuan and Tang, Mi and Ma, Yueheng and Hu, Zhihui and Yu, Chenglong and Zhang, Xiang and Hu, Huanjun and Guan, Qingfeng and Yao, Yao}, journal={International Journal of Geographical Information Science}, pages={1--24}, year={2025}, publisher={Taylor \& Francis} } ```