Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +250 -0
- added_tokens.json +26 -0
- config.json +44 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- special_tokens_map.json +20 -0
- tokenizer.json +3 -0
- tokenizer_config.json +220 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model:
|
| 3 |
+
- BAAI/bge-code-v1
|
| 4 |
+
language:
|
| 5 |
+
- zh
|
| 6 |
+
- en
|
| 7 |
+
tags:
|
| 8 |
+
- bnb-my-repo
|
| 9 |
+
- sentence-transformers
|
| 10 |
+
- sentence-similarity
|
| 11 |
+
- feature-extraction
|
| 12 |
+
- transformers
|
| 13 |
+
pipeline_tag: sentence-similarity
|
| 14 |
+
library_name: sentence-transformers
|
| 15 |
+
license: apache-2.0
|
| 16 |
+
---
|
| 17 |
+
# BAAI/bge-code-v1 (Quantized)
|
| 18 |
+
|
| 19 |
+
## Description
|
| 20 |
+
This model is a quantized version of the original model [`BAAI/bge-code-v1`](https://huggingface.co/BAAI/bge-code-v1).
|
| 21 |
+
|
| 22 |
+
It's quantized using the BitsAndBytes library to 4-bit using the [bnb-my-repo](https://huggingface.co/spaces/bnb-community/bnb-my-repo) space.
|
| 23 |
+
|
| 24 |
+
## Quantization Details
|
| 25 |
+
- **Quantization Type**: int4
|
| 26 |
+
- **bnb_4bit_quant_type**: fp4
|
| 27 |
+
- **bnb_4bit_use_double_quant**: True
|
| 28 |
+
- **bnb_4bit_compute_dtype**: bfloat16
|
| 29 |
+
- **bnb_4bit_quant_storage**: int8
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# 📄 Original Model Information
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
<h1 align="center">FlagEmbedding</h1>
|
| 38 |
+
|
| 39 |
+
For more details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
| 40 |
+
|
| 41 |
+
**BGE-Code-v1** is an LLM-based code embedding model that supports code retrieval, text retrieval, and multilingual retrieval. It primarily demonstrates the following capabilities:
|
| 42 |
+
- Superior Code Retrieval Performance: The model demonstrates exceptional code retrieval capabilities, supporting natural language queries in both English and Chinese, as well as 20 programming languages.
|
| 43 |
+
- Robust Text Retrieval Capabilities: The model maintains strong text retrieval capabilities comparable to text embedding models of similar scale.
|
| 44 |
+
- Extensive Multilingual Support: BGE-Code-v1 offers comprehensive multilingual retrieval capabilities, excelling in languages such as English, Chinese, Japanese, French, and more.
|
| 45 |
+
|
| 46 |
+
## Usage
|
| 47 |
+
|
| 48 |
+
### Using FlagEmbedding
|
| 49 |
+
|
| 50 |
+
```
|
| 51 |
+
git clone https://github.com/FlagOpen/FlagEmbedding.git
|
| 52 |
+
cd FlagEmbedding
|
| 53 |
+
pip install -e .
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
```python
|
| 57 |
+
from FlagEmbedding import FlagLLMModel
|
| 58 |
+
queries = [
|
| 59 |
+
"Delete the record with ID 4 from the 'Staff' table.",
|
| 60 |
+
'Delete all records in the "Livestock" table where age is greater than 5'
|
| 61 |
+
]
|
| 62 |
+
documents = [
|
| 63 |
+
"DELETE FROM Staff WHERE StaffID = 4;",
|
| 64 |
+
"DELETE FROM Livestock WHERE age > 5;"
|
| 65 |
+
]
|
| 66 |
+
model = FlagLLMModel('BAAI/bge-code-v1',
|
| 67 |
+
query_instruction_format="<instruct>{}\n<query>{}",
|
| 68 |
+
query_instruction_for_retrieval="Given a question in text, retrieve SQL queries that are appropriate responses to the question.",
|
| 69 |
+
trust_remote_code=True,
|
| 70 |
+
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
| 71 |
+
embeddings_1 = model.encode_queries(queries)
|
| 72 |
+
embeddings_2 = model.encode_corpus(documents)
|
| 73 |
+
similarity = embeddings_1 @ embeddings_2.T
|
| 74 |
+
print(similarity)
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
By default, FlagLLMModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
|
| 78 |
+
|
| 79 |
+
### Using Sentence Transformers
|
| 80 |
+
|
| 81 |
+
```python
|
| 82 |
+
from sentence_transformers import SentenceTransformer
|
| 83 |
+
import torch
|
| 84 |
+
|
| 85 |
+
# Load the model, optionally in float16 precision for faster inference
|
| 86 |
+
model = SentenceTransformer(
|
| 87 |
+
"BAAI/bge-code-v1",
|
| 88 |
+
trust_remote_code=True,
|
| 89 |
+
model_kwargs={"torch_dtype": torch.float16},
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# Prepare a prompt given an instruction
|
| 93 |
+
instruction = 'Given a question in text, retrieve SQL queries that are appropriate responses to the question.'
|
| 94 |
+
prompt = f'<instruct>{instruction}\n<query>'
|
| 95 |
+
# Prepare queries and documents
|
| 96 |
+
queries = [
|
| 97 |
+
"Delete the record with ID 4 from the 'Staff' table.",
|
| 98 |
+
'Delete all records in the "Livestock" table where age is greater than 5'
|
| 99 |
+
]
|
| 100 |
+
documents = [
|
| 101 |
+
"DELETE FROM Staff WHERE StaffID = 4;",
|
| 102 |
+
"DELETE FROM Livestock WHERE age > 5;"
|
| 103 |
+
]
|
| 104 |
+
|
| 105 |
+
# Compute the query and document embeddings
|
| 106 |
+
query_embeddings = model.encode(queries, prompt=prompt)
|
| 107 |
+
document_embeddings = model.encode(documents)
|
| 108 |
+
|
| 109 |
+
# Compute the cosine similarity between the query and document embeddings
|
| 110 |
+
similarities = model.similarity(query_embeddings, document_embeddings)
|
| 111 |
+
print(similarities)
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
### Using HuggingFace Transformers
|
| 115 |
+
|
| 116 |
+
```python
|
| 117 |
+
import torch
|
| 118 |
+
import torch.nn.functional as F
|
| 119 |
+
|
| 120 |
+
from torch import Tensor
|
| 121 |
+
from transformers import AutoTokenizer, AutoModel
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def last_token_pool(last_hidden_states: Tensor,
|
| 125 |
+
attention_mask: Tensor) -> Tensor:
|
| 126 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
| 127 |
+
if left_padding:
|
| 128 |
+
return last_hidden_states[:, -1]
|
| 129 |
+
else:
|
| 130 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
| 131 |
+
batch_size = last_hidden_states.shape[0]
|
| 132 |
+
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def get_detailed_instruct(task_description: str, query: str) -> str:
|
| 136 |
+
return f'<instruct>{task_description}\n<query>{query}'
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
instruction = 'Given a question in text, retrieve SQL queries that are appropriate responses to the question.'
|
| 140 |
+
queries = [
|
| 141 |
+
"Delete the record with ID 4 from the 'Staff' table.",
|
| 142 |
+
'Delete all records in the "Livestock" table where age is greater than 5'
|
| 143 |
+
]
|
| 144 |
+
documents = [
|
| 145 |
+
"DELETE FROM Staff WHERE StaffID = 4;",
|
| 146 |
+
"DELETE FROM Livestock WHERE age > 5;"
|
| 147 |
+
]
|
| 148 |
+
input_texts = queries + documents
|
| 149 |
+
|
| 150 |
+
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-code-v1', trust_remote_code=True)
|
| 151 |
+
model = AutoModel.from_pretrained('BAAI/bge-code-v1', trust_remote_code=True)
|
| 152 |
+
model.eval()
|
| 153 |
+
|
| 154 |
+
max_length = 4096
|
| 155 |
+
# Tokenize the input texts
|
| 156 |
+
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=8)
|
| 157 |
+
|
| 158 |
+
with torch.no_grad():
|
| 159 |
+
outputs = model(**batch_dict)
|
| 160 |
+
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
| 161 |
+
|
| 162 |
+
# normalize embeddings
|
| 163 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 164 |
+
scores = (embeddings[:2] @ embeddings[2:].T) * 100
|
| 165 |
+
print(scores.tolist())
|
| 166 |
+
```
|
| 167 |
+
|
| 168 |
+
## Evaluation
|
| 169 |
+
|
| 170 |
+
**BGE-Code-v1** achieves state-of-the-art performance on both the CoIR and CodeRAG benchmarks.
|
| 171 |
+
|
| 172 |
+
- CoIR
|
| 173 |
+
|
| 174 |
+
| | CodeXEmbed-2B | CodeXEmbed-7B | Voyage-Code-002 | Voyage-Code-003 | BGE-Code-v1 |
|
| 175 |
+
|---------------------------------------|---------------|---------------|-----------------|-----------------|-----------|
|
| 176 |
+
| **Apps** | 76.86 | 85.38 | 26.52 | 93.62 | 98.08 |
|
| 177 |
+
| **CosQA** | 40.47 | 42.47 | 29.79 | 34.45 | 46.72 |
|
| 178 |
+
| **Text2SQL** | 78.42 | 78.94 | 69.26 | 62.87 | 64.35 |
|
| 179 |
+
| **CSN** | 87.87 | 89.67 | 81.79 | 89.35 | 89.53 |
|
| 180 |
+
| **CSN-CCR** | 97.66 | 97.95 | 73.45 | 90.05 | 98.30 |
|
| 181 |
+
| **CodeTrans-Contest** | 90.30 | 94.45 | 72.77 | 94.96 | 94.38 |
|
| 182 |
+
| **CodeTrans-DL** | 38.57 | 40.46 | 27.48 | 38.57 | 46.13 |
|
| 183 |
+
| **StackOverFlow-QA** | 94.47 | 96.33 | 67.68 | 97.17 | 95.35 |
|
| 184 |
+
| **CodeFeedBack-ST** | 86.36 | 87.53 | 65.35 | 90.67 | 90.56 |
|
| 185 |
+
| **CodeFeedBack-MT** | 65.51 | 68.83 | 28.74 | 93.58 | 94.38 |
|
| 186 |
+
| **AVG** | **75.65** | **78.20** | **56.26** | **78.53** | **81.77** |
|
| 187 |
+
|
| 188 |
+
- CodedRAG
|
| 189 |
+
|
| 190 |
+
| | HummanEval | MBPP | DS-1000 | ODEX | RepoEval | SWE-bench-Lite | AVG |
|
| 191 |
+
| --------------- | ---------- | ---- | ------- | ---- | -------- | -------------- | ---- |
|
| 192 |
+
| SFR | 100.0 | 99.0 | 19.3 | 37.1 | 83.8 | 62.7 | **67.0** |
|
| 193 |
+
| Jina-v2-code | 100.0 | 97.7 | 26.2 | 19.9 | 90.5 | 58.3 | **65.4** |
|
| 194 |
+
| CodeXEmbed-2B | 100.0 | 97.4 | 25.4 | 23.9 | 88.7 | 52.4 | **64.6** |
|
| 195 |
+
| Voyage-Code-002 | 100.0 | 99.0 | 33.1 | 26.6 | 94.3 | 29.1 | **63.7** |
|
| 196 |
+
| BGE-Code-v1 | 100.0 | 99.2 | 40.9 | 36.1 | 93.1 | 67.4 | **72.8** |
|
| 197 |
+
|
| 198 |
+
### Instructions for Evaluation
|
| 199 |
+
|
| 200 |
+
```python
|
| 201 |
+
{
|
| 202 |
+
"Apps": "Given a code contest problem description, retrieve relevant code that can help solve the problem.",
|
| 203 |
+
"CosQA": "Given a web search query, retrieve relevant code that can help answer the query.",
|
| 204 |
+
"Text2SQL": "Given a question in text, retrieve SQL queries that are appropriate responses to the question.",
|
| 205 |
+
"CSN": "Given a piece of code, retrieve the document string that summarizes the code.",
|
| 206 |
+
"CSN-CCR": "Given a piece of code segment, retrieve the code segment that is the latter part of the code.",
|
| 207 |
+
"CodeTrans-DL": "Given a piece of code, retrieve code that is semantically equivalent to the input code.",
|
| 208 |
+
"CodeTrans-Contest": "Given a piece of Python code, retrieve C++ code that is semantically equivalent to the input code.",
|
| 209 |
+
"StackOverFlow-QA": "Given a question that consists of a mix of text and code snippets, retrieve relevant answers that also consist of a mix of text and code snippets, and can help answer the question.",
|
| 210 |
+
"CodeFeedBack-ST": "Given a question that consists of a mix of text and code snippets, retrieve relevant answers that also consist of a mix of text and code snippets, and can help answer the question.",
|
| 211 |
+
"CodeFeedBack-MT": "Given a multi-turn conversation history that consists of a mix of text and code snippets, retrieve relevant answers that also consist of a mix of text and code snippets, and can help answer the question.",
|
| 212 |
+
"HummanEval": "Given a question that consists of a mix of text and code snippets, retrieve relevant answers that also consist of a mix of text and code snippets, and can help answer the question.",
|
| 213 |
+
"MBPP": "Given a textual explanation of code functionality, retrieve the corresponding code implementation.",
|
| 214 |
+
"DS-1000": "Given a question that consists of a mix of text and code snippets, retrieve relevant answers that also consist of a mix of text and code snippets, and can help answer the question.",
|
| 215 |
+
"ODEX": "Given a question, retrieve relevant answers that also consist of a mix of text and code snippets, and can help answer the question.",
|
| 216 |
+
"RepoEval": "Given a piece of code segment, retrieve the code segment that is the latter part of the code.",
|
| 217 |
+
"SWE-bench-Lite": "Given a code snippet containing a bug and a natural language description of the bug or error, retrieve code snippets that demonstrate solutions or fixes for similar bugs or errors (the desired documents)."
|
| 218 |
+
}
|
| 219 |
+
```
|
| 220 |
+
|
| 221 |
+
## Citation
|
| 222 |
+
|
| 223 |
+
If you find this repository useful, please consider giving a star :star: and citation
|
| 224 |
+
|
| 225 |
+
```
|
| 226 |
+
@article{bge-llm,
|
| 227 |
+
title={Making text embedders few-shot learners},
|
| 228 |
+
author={Li, Chaofan and Qin, MingHao and Xiao, Shitao and Chen, Jianlyu and Luo, Kun and Shao, Yingxia and Lian, Defu and Liu, Zheng},
|
| 229 |
+
journal={arXiv preprint arXiv:2409.15700},
|
| 230 |
+
year={2024}
|
| 231 |
+
}
|
| 232 |
+
|
| 233 |
+
@misc{bge-m3,
|
| 234 |
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
| 235 |
+
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
| 236 |
+
year={2024},
|
| 237 |
+
eprint={2402.03216},
|
| 238 |
+
archivePrefix={arXiv},
|
| 239 |
+
primaryClass={cs.CL}
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
@misc{bge_embedding,
|
| 243 |
+
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
| 244 |
+
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
|
| 245 |
+
year={2023},
|
| 246 |
+
eprint={2309.07597},
|
| 247 |
+
archivePrefix={arXiv},
|
| 248 |
+
primaryClass={cs.CL}
|
| 249 |
+
}
|
| 250 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<instruct>": 151665,
|
| 4 |
+
"<query>": 151666,
|
| 5 |
+
"<tool_call>": 151657,
|
| 6 |
+
"<|box_end|>": 151649,
|
| 7 |
+
"<|box_start|>": 151648,
|
| 8 |
+
"<|endoftext|>": 151643,
|
| 9 |
+
"<|file_sep|>": 151664,
|
| 10 |
+
"<|fim_middle|>": 151660,
|
| 11 |
+
"<|fim_pad|>": 151662,
|
| 12 |
+
"<|fim_prefix|>": 151659,
|
| 13 |
+
"<|fim_suffix|>": 151661,
|
| 14 |
+
"<|im_end|>": 151645,
|
| 15 |
+
"<|im_start|>": 151644,
|
| 16 |
+
"<|image_pad|>": 151655,
|
| 17 |
+
"<|object_ref_end|>": 151647,
|
| 18 |
+
"<|object_ref_start|>": 151646,
|
| 19 |
+
"<|quad_end|>": 151651,
|
| 20 |
+
"<|quad_start|>": 151650,
|
| 21 |
+
"<|repo_name|>": 151663,
|
| 22 |
+
"<|video_pad|>": 151656,
|
| 23 |
+
"<|vision_end|>": 151653,
|
| 24 |
+
"<|vision_pad|>": 151654,
|
| 25 |
+
"<|vision_start|>": 151652
|
| 26 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "BAAI/bge-code-v1",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2Model"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151643,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 1536,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 8960,
|
| 13 |
+
"max_position_embeddings": 32768,
|
| 14 |
+
"max_window_layers": 28,
|
| 15 |
+
"model_type": "qwen2",
|
| 16 |
+
"num_attention_heads": 12,
|
| 17 |
+
"num_hidden_layers": 28,
|
| 18 |
+
"num_key_value_heads": 2,
|
| 19 |
+
"quantization_config": {
|
| 20 |
+
"_load_in_4bit": true,
|
| 21 |
+
"_load_in_8bit": false,
|
| 22 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
| 23 |
+
"bnb_4bit_quant_storage": "int8",
|
| 24 |
+
"bnb_4bit_quant_type": "fp4",
|
| 25 |
+
"bnb_4bit_use_double_quant": true,
|
| 26 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
| 27 |
+
"llm_int8_has_fp16_weight": false,
|
| 28 |
+
"llm_int8_skip_modules": null,
|
| 29 |
+
"llm_int8_threshold": 6.0,
|
| 30 |
+
"load_in_4bit": true,
|
| 31 |
+
"load_in_8bit": false,
|
| 32 |
+
"quant_method": "bitsandbytes"
|
| 33 |
+
},
|
| 34 |
+
"rms_norm_eps": 1e-06,
|
| 35 |
+
"rope_scaling": null,
|
| 36 |
+
"rope_theta": 1000000.0,
|
| 37 |
+
"sliding_window": null,
|
| 38 |
+
"tie_word_embeddings": true,
|
| 39 |
+
"torch_dtype": "float32",
|
| 40 |
+
"transformers_version": "4.49.0",
|
| 41 |
+
"use_cache": false,
|
| 42 |
+
"use_sliding_window": false,
|
| 43 |
+
"vocab_size": 151667
|
| 44 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b33d70912d75fb23aa0d9ce3656fc9a9b93d59e42647c9bf86b8fb4ffabe9419
|
| 3 |
+
size 1608708594
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<instruct>",
|
| 4 |
+
"<query>"
|
| 5 |
+
],
|
| 6 |
+
"eos_token": {
|
| 7 |
+
"content": "<|endoftext|>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false
|
| 12 |
+
},
|
| 13 |
+
"pad_token": {
|
| 14 |
+
"content": "<|endoftext|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false
|
| 19 |
+
}
|
| 20 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a56524092f5d0676e63537511b535e73e7580a7efe440247ef3fa43d019a0af0
|
| 3 |
+
size 11422261
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": true,
|
| 4 |
+
"add_prefix_space": false,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"151643": {
|
| 7 |
+
"content": "<|endoftext|>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"151644": {
|
| 15 |
+
"content": "<|im_start|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"151645": {
|
| 23 |
+
"content": "<|im_end|>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"151646": {
|
| 31 |
+
"content": "<|object_ref_start|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"151647": {
|
| 39 |
+
"content": "<|object_ref_end|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"151648": {
|
| 47 |
+
"content": "<|box_start|>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"151649": {
|
| 55 |
+
"content": "<|box_end|>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"151650": {
|
| 63 |
+
"content": "<|quad_start|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
},
|
| 70 |
+
"151651": {
|
| 71 |
+
"content": "<|quad_end|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": true
|
| 77 |
+
},
|
| 78 |
+
"151652": {
|
| 79 |
+
"content": "<|vision_start|>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": false,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": true
|
| 85 |
+
},
|
| 86 |
+
"151653": {
|
| 87 |
+
"content": "<|vision_end|>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": true
|
| 93 |
+
},
|
| 94 |
+
"151654": {
|
| 95 |
+
"content": "<|vision_pad|>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": true
|
| 101 |
+
},
|
| 102 |
+
"151655": {
|
| 103 |
+
"content": "<|image_pad|>",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": false,
|
| 106 |
+
"rstrip": false,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": true
|
| 109 |
+
},
|
| 110 |
+
"151656": {
|
| 111 |
+
"content": "<|video_pad|>",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": false,
|
| 114 |
+
"rstrip": false,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": true
|
| 117 |
+
},
|
| 118 |
+
"151657": {
|
| 119 |
+
"content": "<tool_call>",
|
| 120 |
+
"lstrip": false,
|
| 121 |
+
"normalized": false,
|
| 122 |
+
"rstrip": false,
|
| 123 |
+
"single_word": false,
|
| 124 |
+
"special": false
|
| 125 |
+
},
|
| 126 |
+
"151658": {
|
| 127 |
+
"content": "</tool_call>",
|
| 128 |
+
"lstrip": false,
|
| 129 |
+
"normalized": false,
|
| 130 |
+
"rstrip": false,
|
| 131 |
+
"single_word": false,
|
| 132 |
+
"special": false
|
| 133 |
+
},
|
| 134 |
+
"151659": {
|
| 135 |
+
"content": "<|fim_prefix|>",
|
| 136 |
+
"lstrip": false,
|
| 137 |
+
"normalized": false,
|
| 138 |
+
"rstrip": false,
|
| 139 |
+
"single_word": false,
|
| 140 |
+
"special": false
|
| 141 |
+
},
|
| 142 |
+
"151660": {
|
| 143 |
+
"content": "<|fim_middle|>",
|
| 144 |
+
"lstrip": false,
|
| 145 |
+
"normalized": false,
|
| 146 |
+
"rstrip": false,
|
| 147 |
+
"single_word": false,
|
| 148 |
+
"special": false
|
| 149 |
+
},
|
| 150 |
+
"151661": {
|
| 151 |
+
"content": "<|fim_suffix|>",
|
| 152 |
+
"lstrip": false,
|
| 153 |
+
"normalized": false,
|
| 154 |
+
"rstrip": false,
|
| 155 |
+
"single_word": false,
|
| 156 |
+
"special": false
|
| 157 |
+
},
|
| 158 |
+
"151662": {
|
| 159 |
+
"content": "<|fim_pad|>",
|
| 160 |
+
"lstrip": false,
|
| 161 |
+
"normalized": false,
|
| 162 |
+
"rstrip": false,
|
| 163 |
+
"single_word": false,
|
| 164 |
+
"special": false
|
| 165 |
+
},
|
| 166 |
+
"151663": {
|
| 167 |
+
"content": "<|repo_name|>",
|
| 168 |
+
"lstrip": false,
|
| 169 |
+
"normalized": false,
|
| 170 |
+
"rstrip": false,
|
| 171 |
+
"single_word": false,
|
| 172 |
+
"special": false
|
| 173 |
+
},
|
| 174 |
+
"151664": {
|
| 175 |
+
"content": "<|file_sep|>",
|
| 176 |
+
"lstrip": false,
|
| 177 |
+
"normalized": false,
|
| 178 |
+
"rstrip": false,
|
| 179 |
+
"single_word": false,
|
| 180 |
+
"special": false
|
| 181 |
+
},
|
| 182 |
+
"151665": {
|
| 183 |
+
"content": "<instruct>",
|
| 184 |
+
"lstrip": false,
|
| 185 |
+
"normalized": false,
|
| 186 |
+
"rstrip": false,
|
| 187 |
+
"single_word": false,
|
| 188 |
+
"special": true
|
| 189 |
+
},
|
| 190 |
+
"151666": {
|
| 191 |
+
"content": "<query>",
|
| 192 |
+
"lstrip": false,
|
| 193 |
+
"normalized": false,
|
| 194 |
+
"rstrip": false,
|
| 195 |
+
"single_word": false,
|
| 196 |
+
"special": true
|
| 197 |
+
}
|
| 198 |
+
},
|
| 199 |
+
"additional_special_tokens": [
|
| 200 |
+
"<instruct>",
|
| 201 |
+
"<query>"
|
| 202 |
+
],
|
| 203 |
+
"auto_map": {
|
| 204 |
+
"AutoTokenizer": [
|
| 205 |
+
"BAAI/bge-code-v1--tokenization_qwen.Qwen2Tokenizer",
|
| 206 |
+
null
|
| 207 |
+
]
|
| 208 |
+
},
|
| 209 |
+
"bos_token": null,
|
| 210 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 211 |
+
"clean_up_tokenization_spaces": false,
|
| 212 |
+
"eos_token": "<|endoftext|>",
|
| 213 |
+
"errors": "replace",
|
| 214 |
+
"extra_special_tokens": {},
|
| 215 |
+
"model_max_length": 256,
|
| 216 |
+
"pad_token": "<|endoftext|>",
|
| 217 |
+
"split_special_tokens": false,
|
| 218 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 219 |
+
"unk_token": null
|
| 220 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|