--- language: - en license: mit library_name: transformers tags: - code - typescript - reasoning - react - nextjs - angular - nodejs - deepseek - gguf - ollama base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B datasets: - github-code model-index: - name: TypeScript-SLM-7B-Reasoning-Full results: [] --- # TypeScript-SLM-7B-Reasoning-Full **TypeScript-SLM-7B-Reasoning** is a 7B-parameter DeepSeek-based model fine-tuned for step-by-step TypeScript reasoning. It merges the base model with LoRA adapters and includes GGUF quantization for local/Ollama workflows. This repository hosts the **full merged model** plus **GGUF (q4_k_m)** for lightweight inference. ## Model Description - **Base Model**: [deepseek-ai/DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) - **Model Type**: Causal LM (code reasoning) - **Parameters**: 7B - **Context Length**: Inherits base DeepSeek-R1-Distill-Qwen-7B window - **Fine-tuning**: LoRA on TypeScript reasoning/debugging tasks - **License**: MIT - **Language**: English, TypeScript/JavaScript code - **System Prompt**: Focus on step-by-step debugging, refactoring, and design-level explanations before giving the final typed solution. ### What it is good at - ✅ Explaining TypeScript bugs and fixes - ✅ Refactoring and API design discussions - ✅ Generating strongly-typed code for React/Next.js/Angular/Node.js - ✅ Producing clear reasoning traces before final answers ## Intended Uses **Primary**: TypeScript reasoning, debugging, refactoring, and guided code generation. **Out-of-scope**: Arbitrary natural-language chat unrelated to code; safety-sensitive or factual tasks outside TypeScript. ### Prompt Examples ``` "Debug this TypeScript function and explain the bug step by step:\n\nfunction add(a?: number, b?: number) { return a + b; }" "Design a typed API surface for a Next.js todo service. Explain design choices, then show the final code." ``` ## How to Use ### Ollama (recommended for local) ```bash ollama create typescript-slm-7b-reasoning -f gguf/Modelfile-q4_k_m ollama run typescript-slm-7b-reasoning "Explain why this React hook re-renders too often..." ``` ### Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model = AutoModelForCausalLM.from_pretrained( "sylvester-francis/typescript-slm-7b-reasoning-full", torch_dtype=torch.float16, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained("sylvester-francis/typescript-slm-7b-reasoning-full") prompt = "Refactor this TypeScript service for better typing and error handling..." inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=512, temperature=0.3, top_p=0.95, do_sample=True, pad_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### GGUF (llama.cpp) ```bash huggingface-cli download sylvester-francis/typescript-slm-7b-reasoning-full \ gguf/typescript-slm-7b-reasoning-q4_k_m.gguf --local-dir ./models ./llama-cli -m ./models/gguf/typescript-slm-7b-reasoning-q4_k_m.gguf \ -p "Explain and fix this TypeScript type error..." ``` ## Model Files - `gguf/typescript-slm-7b-reasoning-q4_k_m.gguf` (≈4.7GB) - `gguf/Modelfile-q4_k_m` (Ollama import) ## Training Data (summary) - Curated TypeScript code from popular GitHub repos (React, Next.js, Angular, Node.js) - StackOverflow Q&A focused on debugging and reasoning - Filters for strong typing, framework best practices, and reasoning-rich examples ## Training Configuration (LoRA) ```yaml Base Model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B Method: LoRA fine-tuning Target Domains: TypeScript reasoning, debugging, refactoring LoRA Rank / Alpha: tuned for stability and reasoning depth Optimizer: AdamW Max Sequence Length: inherits base model context window ``` ## Evaluation Qualitative checks on TypeScript debugging/refactoring prompts show: - Clear reasoning steps before final code - Strong type usage and framework-aware patterns - Concise, actionable fixes ## Safety & Limitations - May generate incorrect code or hallucinate APIs—review before production use. - Not a security scanner; do not rely on it for vulnerability assessments. - Avoid non-code or high-stakes factual tasks. ## License MIT for the fine-tuned model; base model license and dataset terms also apply. ## Contact - Maintainer: Sylvester Francis (`@sylvester-francis` on Hugging Face) - Issues/feedback: open a discussion on the model repo