--- license: apache-2.0 pipeline_tag: audio-text-to-text library_name: transformers tags: - audio-reasoning - chain-of-thought - multi-modal - step-audio-r1 --- ## Step-Audio-R1 โœจ [Demo Page](https://stepaudiollm.github.io/step-audio-r1/)  | ๐ŸŽฎ [Playground](https://huggingface.co/spaces/stepfun-ai/Step-Audio-R1)  | ๐ŸŒŸ [GitHub](https://github.com/stepfun-ai/Step-Audio-R1)  | ๐Ÿ“‘ [Paper](https://arxiv.org/abs/2511.15848)  Step-Audio-R1 is the **first audio language model to successfully unlock Chain-of-Thought (CoT) reasoning**. It decisively solves the "inverted scaling" problem that plagues existing models, where performance degrades with longer reasoning. Step-Audio-R1 is the first model to demonstrate that for audio, like text and vision, allocating more compute at test-time predictably improves performance. We found the root cause of this anomaly: models were engaging in **textual surrogate reasoning** (analyzing transcripts, not audio) due to a modality mismatch. To solve this, we introduce **Modality-Grounded Reasoning Distillation (MGRD)**, an iterative training framework that shifts the model's reasoning from textual abstractions to acoustic properties. This new approach allows us to create **Step-Audio-R1**, which: - Is the **first audio reasoning model** that successfully benefits from test-time compute scaling. - Surpasses **Gemini 2.5 Pro** and is comparable to **Gemini 3** across major audio reasoning tasks. - Transforms extended deliberation from a liability into a **powerful asset** for audio intelligence. ## Features - **Chain-of-Thought (CoT) Reasoning** - First audio language model to successfully unlock Chain-of-Thought reasoning capabilities. - Generates audio-relevant reasoning chains that genuinely ground themselves in acoustic features. - **Modality-Grounded Reasoning Distillation (MGRD)** - Innovative iterative training framework that shifts reasoning from textual abstractions to acoustic properties. - Solves the modality mismatch problem that caused textual surrogate reasoning in previous models. - **Superior Performance** - Surpasses **Gemini 2.5 Pro** across comprehensive audio understanding and reasoning benchmarks. - Comparable to **Gemini 3** across major audio reasoning tasks. - Surpasses **Qwen3** in textual reasoning. - Covers speech, environmental sounds, and music domains. For more examples, see [demo page](https://stepaudiollm.github.io/step-audio-r1/). ## Model Usage ### ๐Ÿ“œ Requirements - **GPU**: NVIDIA GPUs with CUDA support (tested on 4ร—L40S/H100/H800/H20). - **Operating System**: Linux. - **Python**: >= 3.10.0. ### โฌ‡๏ธ Download Model First, you need to download the Step-Audio-R1 model weights. **Method A ยท Git LFS** ```bash git lfs install git clone https://huggingface.co/stepfun-ai/Step-Audio-R1 ``` **Method B ยท Hugging Face CLI** ```bash hf download stepfun-ai/Step-Audio-R1 --local-dir ./Step-Audio-R1 ``` ### ๐Ÿš€ Deployment and Execution We provide two ways to serve the model: Docker (recommended) or compiling the customized vLLM backend. #### ๐Ÿณ Method 1 ยท Run with Docker (Recommended) A customized vLLM image is required. 1. **Pull the image**: ```bash docker pull stepfun2025/vllm:step-audio-2-v20250909 ``` 2. **Start the service**: Assuming the model is downloaded in the `Step-Audio-R1` folder in the current directory. ```bash docker run --rm -ti --gpus all \ -v $(pwd)/Step-Audio-R1:/Step-Audio-R1 \ -p 9999:9999 \ stepfun2025/vllm:step-audio-2-v20250909 \ -- vllm serve /Step-Audio-R1 \ --served-model-name Step-Audio-R1 \ --port 9999 \ --max-model-len 16384 \ --max-num-seqs 32 \ --tensor-parallel-size 4 \ --chat-template '{%- macro render_content(content) -%}{%- if content is string -%}{{- content.replace("\n", "") -}}{%- elif content is mapping -%}{{- content['"'"'value'"'"'] if '"'"'value'"'"' in content else content['"'"'text'"'"'] -}}{%- elif content is iterable -%}{%- for item in content -%}{%- if item.type == '"'"'text'"'"' -%}{{- item['"'"'value'"'"'] if '"'"'value'"'"' in item else item['"'"'text'"'"'] -}}{%- elif item.type == '"'"'audio'"'"' -%}{%- endif -%}{%- endfor -%}{%- endif -%}{%- endmacro -%}{%- if tools -%}{{- '"'"'<|BOT|>system\n'"'"' -}}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{{- '"'"'<|BOT|>tool_json_schemas\n'"'"' + tools|tojson + '"'"'<|EOT|>'"'"' -}}{%- else -%}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- '"'"'<|BOT|>system\n'"'"' + render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- for message in messages -%}{%- if message["role"] == "user" -%}{{- '"'"'<|BOT|>human\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- elif message["role"] == "assistant" -%}{{- '"'"'<|BOT|>assistant\n'"'"' + (render_content(message["content"]) if message["content"] else '"'"''"'"') -}}{%- set is_last_assistant = true -%}{%- for m in messages[loop.index:] -%}{%- if m["role"] == "assistant" -%}{%- set is_last_assistant = false -%}{%- endif -%}{%- endfor -%}{%- if not is_last_assistant -%}{{- '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- elif message["role"] == "function_output" -%}{%- else -%}{%- if not (loop.first and message["role"] == "system") -%}{{- '"'"'<|BOT|>'"'"' + message["role"] + '"'"'\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{- '"'"'<|BOT|>assistant\n\n'"'"' -}}{%- endif -%}' \ --enable-log-requests \ --interleave-mm-strings \ --trust-remote-code ``` After the service starts, it will listen on `localhost:9999`. #### ๐Ÿณ Method 2 ยท Run from Source (Compile vLLM) Step-Audio-R1 requires a customized vLLM backend. 1. **Download Source Code**: ```bash git clone https://github.com/stepfun-ai/vllm.git cd vllm ``` 2. **Prepare Environment**: ```bash python3 -m venv .venv source .venv/bin/activate ``` 3. **Install and Compile**: vLLM contains both C++ and Python code. We mainly modified the Python code, so the C++ part can use the pre-compiled version to speed up the process. ```bash # Use pre-compiled C++ extensions (Recommended) VLLM_USE_PRECOMPILED=1 pip install -e . ``` 4. **Switch Branch**: After compilation, switch to the branch that supports Step-Audio. ```bash git checkout step-audio-2-mini ``` 5. **Start the Service**: ```bash # Ensure you are in the vllm directory and the virtual environment is activated source .venv/bin/activate python3 -m vllm.entrypoints.openai.api_server \ --model ../Step-Audio-R1 \ --served-model-name Step-Audio-R1 \ --port 9999 \ --host 0.0.0.0 \ --max-model-len 65536 \ --max-num-seqs 128 \ --tensor-parallel-size 4 \ --gpu-memory-utilization 0.85 \ --trust-remote-code \ --enable-log-requests \ --interleave-mm-strings \ --chat-template '{%- macro render_content(content) -%}{%- if content is string -%}{{- content.replace("\n", "") -}}{%- elif content is mapping -%}{{- content['"'"'value'"'"'] if '"'"'value'"'"' in content else content['"'"'text'"'"'] -}}{%- elif content is iterable -%}{%- for item in content -%}{%- if item.type == '"'"'text'"'"' -%}{{- item['"'"'value'"'"'] if '"'"'value'"'"' in item else item['"'"'text'"'"'] -}}{%- elif item.type == '"'"'audio'"'"' -%}{%- endif -%}{%- endfor -%}{%- endif -%}{%- endmacro -%}{%- if tools -%}{{- '"'"'<|BOT|>system\n'"'"' -}}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{{- '"'"'<|BOT|>tool_json_schemas\n'"'"' + tools|tojson + '"'"'<|EOT|>'"'"' -}}{%- else -%}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- '"'"'<|BOT|>system\n'"'"' + render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- for message in messages -%}{%- if message["role"] == "user" -%}{{- '"'"'<|BOT|>human\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- elif message["role"] == "assistant" -%}{{- '"'"'<|BOT|>assistant\n'"'"' + (render_content(message["content"]) if message["content"] else '"'"''"'"') -}}{%- set is_last_assistant = true -%}{%- for m in messages[loop.index:] -%}{%- if m["role"] == "assistant" -%}{%- set is_last_assistant = false -%}{%- endif -%}{%- endfor -%}{%- if not is_last_assistant -%}{{- '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- elif message["role"] == "function_output" -%}{%- else -%}{%- if not (loop.first and message["role"] == "system") -%}{{- '"'"'<|BOT|>'"'"' + message["role"] + '"'"'\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{- '"'"'<|BOT|>assistant\n\n'"'"' -}}{%- endif -%}' ``` After the service starts, it will listen on `localhost:9999`. ### ๐Ÿงช Client Examples Get the example code and run it: ```bash # Clone the repository containing example scripts git clone https://github.com/stepfun-ai/Step-Audio-R1.git r1-scripts # Run the example cd r1-scripts python examples-vllm_r1.py ``` ## Citation ``` @article{tian2025step, title={Step-Audio-R1 Technical Report}, author={Tian, Fei and Zhang, Xiangyu Tony and Zhang, Yuxin and Zhang, Haoyang and Li, Yuxin and Liu, Daijiao and Deng, Yayue and Wu, Donghang and Chen, Jun and Zhao, Liang and others}, journal={arXiv preprint arXiv:2511.15848}, year={2025} } ```