Spaces:
Running
Running
| ### config.py | |
| import os | |
| import math | |
| from transformers import PretrainedConfig | |
| class Config(PretrainedConfig): | |
| def __init__(self) -> None: | |
| # Compatible with the latest version of transformers. | |
| # Error source: https://github.com/huggingface/transformers/commit/9568b506ed511c76ab4d0c6ed591c7fce8e048a5 | |
| # Previous solution in the users' end: https://github.com/ZhengPeng7/BiRefNet/issues/189#issuecomment-2716688688 | |
| super().__init__() | |
| # PATH settings | |
| self.sys_home_dir = os.path.expanduser('~') # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx | |
| # TASK settings | |
| self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0] | |
| self.training_set = { | |
| 'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0], | |
| 'COD': 'TR-COD10K+TR-CAMO', | |
| 'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5], | |
| 'DIS5K+HRSOD+HRS10K': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD', # leave DIS-VD for evaluation. | |
| 'P3M-10k': 'TR-P3M-10k', | |
| }[self.task] | |
| self.prompt4loc = ['dense', 'sparse'][0] | |
| # Faster-Training settings | |
| self.load_all = True | |
| self.compile = True # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch. | |
| # Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting. | |
| # 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607. | |
| # 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training. | |
| self.precisionHigh = True | |
| # MODEL settings | |
| self.ms_supervision = True | |
| self.out_ref = self.ms_supervision and True | |
| self.dec_ipt = True | |
| self.dec_ipt_split = True | |
| self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder | |
| self.mul_scl_ipt = ['', 'add', 'cat'][2] | |
| self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2] | |
| self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1] | |
| self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0] | |
| # TRAINING settings | |
| self.batch_size = 4 | |
| self.IoU_finetune_last_epochs = [ | |
| 0, | |
| { | |
| 'DIS5K': -50, | |
| 'COD': -20, | |
| 'HRSOD': -20, | |
| 'DIS5K+HRSOD+HRS10K': -20, | |
| 'P3M-10k': -20, | |
| }[self.task] | |
| ][1] # choose 0 to skip | |
| self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) # DIS needs high lr to converge faster. Adapt the lr linearly | |
| self.size = 1024 | |
| self.num_workers = max(4, self.batch_size) # will be decrease to min(it, batch_size) at the initialization of the data_loader | |
| # Backbone settings | |
| self.bb = [ | |
| 'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2 | |
| 'swin_v1_t', 'swin_v1_s', # 3, 4 | |
| 'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs4 | |
| 'pvt_v2_b0', 'pvt_v2_b1', # 7, 8 | |
| 'pvt_v2_b2', 'pvt_v2_b5', # 9-bs10, 10-bs5 | |
| ][3] | |
| self.lateral_channels_in_collection = { | |
| 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64], | |
| 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64], | |
| 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192], | |
| 'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96], | |
| 'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64], | |
| }[self.bb] | |
| if self.mul_scl_ipt == 'cat': | |
| self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection] | |
| self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else [] | |
| # MODEL settings - inactive | |
| self.lat_blk = ['BasicLatBlk'][0] | |
| self.dec_channels_inter = ['fixed', 'adap'][0] | |
| self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0] | |
| self.progressive_ref = self.refine and True | |
| self.ender = self.progressive_ref and False | |
| self.scale = self.progressive_ref and 2 | |
| self.auxiliary_classification = False # Only for DIS5K, where class labels are saved in `dataset.py`. | |
| self.refine_iteration = 1 | |
| self.freeze_bb = False | |
| self.model = [ | |
| 'BiRefNet', | |
| ][0] | |
| if self.dec_blk == 'HierarAttDecBlk': | |
| self.batch_size = 2 ** [0, 1, 2, 3, 4][2] | |
| # TRAINING settings - inactive | |
| self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4] | |
| self.optimizer = ['Adam', 'AdamW'][1] | |
| self.lr_decay_epochs = [1e5] # Set to negative N to decay the lr in the last N-th epoch. | |
| self.lr_decay_rate = 0.5 | |
| # Loss | |
| self.lambdas_pix_last = { | |
| # not 0 means opening this loss | |
| # original rate -- 1 : 30 : 1.5 : 0.2, bce x 30 | |
| 'bce': 30 * 1, # high performance | |
| 'iou': 0.5 * 1, # 0 / 255 | |
| 'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64) | |
| 'mse': 150 * 0, # can smooth the saliency map | |
| 'triplet': 3 * 0, | |
| 'reg': 100 * 0, | |
| 'ssim': 10 * 1, # help contours, | |
| 'cnt': 5 * 0, # help contours | |
| 'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4. | |
| } | |
| self.lambdas_cls = { | |
| 'ce': 5.0 | |
| } | |
| # Adv | |
| self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training | |
| self.lambda_adv_d = 3. * (self.lambda_adv_g > 0) | |
| # PATH settings - inactive | |
| self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis') | |
| self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights') | |
| self.weights = { | |
| 'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'), | |
| 'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]), | |
| 'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]), | |
| 'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]), | |
| 'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]), | |
| 'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]), | |
| 'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]), | |
| 'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]), | |
| } | |
| # Callbacks - inactive | |
| self.verbose_eval = True | |
| self.only_S_MAE = False | |
| self.use_fp16 = False # Bugs. It may cause nan in training. | |
| self.SDPA_enabled = False # Bugs. Slower and errors occur in multi-GPUs | |
| # others | |
| self.device = [0, 'cpu'][0] # .to(0) == .to('cuda:0') | |
| self.batch_size_valid = 1 | |
| self.rand_seed = 7 | |
| # run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f] | |
| # with open(run_sh_file[0], 'r') as f: | |
| # lines = f.readlines() | |
| # self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0]) | |
| # self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0]) | |
| # self.val_step = [0, self.save_step][0] | |
| def print_task(self) -> None: | |
| # Return task for choosing settings in shell scripts. | |
| print(self.task) | |
| ### models/backbones/pvt_v2.py | |
| import torch | |
| import torch.nn as nn | |
| from functools import partial | |
| from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
| from timm.models.registry import register_model | |
| import math | |
| # from config import Config | |
| # config = Config() | |
| class Mlp(nn.Module): | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.dwconv = DWConv(hidden_features) | |
| self.act = act_layer() | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| self.drop = nn.Dropout(drop) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| elif isinstance(m, nn.Conv2d): | |
| fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| fan_out //= m.groups | |
| m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| def forward(self, x, H, W): | |
| x = self.fc1(x) | |
| x = self.dwconv(x, H, W) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| class Attention(nn.Module): | |
| def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): | |
| super().__init__() | |
| assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = qk_scale or head_dim ** -0.5 | |
| self.q = nn.Linear(dim, dim, bias=qkv_bias) | |
| self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) | |
| self.attn_drop_prob = attn_drop | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| self.sr_ratio = sr_ratio | |
| if sr_ratio > 1: | |
| self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) | |
| self.norm = nn.LayerNorm(dim) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| elif isinstance(m, nn.Conv2d): | |
| fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| fan_out //= m.groups | |
| m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| def forward(self, x, H, W): | |
| B, N, C = x.shape | |
| q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
| if self.sr_ratio > 1: | |
| x_ = x.permute(0, 2, 1).reshape(B, C, H, W) | |
| x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) | |
| x_ = self.norm(x_) | |
| kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
| else: | |
| kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
| k, v = kv[0], kv[1] | |
| if config.SDPA_enabled: | |
| x = torch.nn.functional.scaled_dot_product_attention( | |
| q, k, v, | |
| attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False | |
| ).transpose(1, 2).reshape(B, N, C) | |
| else: | |
| attn = (q @ k.transpose(-2, -1)) * self.scale | |
| attn = attn.softmax(dim=-1) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class Block(nn.Module): | |
| def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
| drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): | |
| super().__init__() | |
| self.norm1 = norm_layer(dim) | |
| self.attn = Attention( | |
| dim, | |
| num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) | |
| # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| elif isinstance(m, nn.Conv2d): | |
| fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| fan_out //= m.groups | |
| m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| def forward(self, x, H, W): | |
| x = x + self.drop_path(self.attn(self.norm1(x), H, W)) | |
| x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) | |
| return x | |
| class OverlapPatchEmbed(nn.Module): | |
| """ Image to Patch Embedding | |
| """ | |
| def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768): | |
| super().__init__() | |
| img_size = to_2tuple(img_size) | |
| patch_size = to_2tuple(patch_size) | |
| self.img_size = img_size | |
| self.patch_size = patch_size | |
| self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] | |
| self.num_patches = self.H * self.W | |
| self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride, | |
| padding=(patch_size[0] // 2, patch_size[1] // 2)) | |
| self.norm = nn.LayerNorm(embed_dim) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| elif isinstance(m, nn.Conv2d): | |
| fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| fan_out //= m.groups | |
| m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| def forward(self, x): | |
| x = self.proj(x) | |
| _, _, H, W = x.shape | |
| x = x.flatten(2).transpose(1, 2) | |
| x = self.norm(x) | |
| return x, H, W | |
| class PyramidVisionTransformerImpr(nn.Module): | |
| def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512], | |
| num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., | |
| attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, | |
| depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]): | |
| super().__init__() | |
| self.num_classes = num_classes | |
| self.depths = depths | |
| # patch_embed | |
| self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels, | |
| embed_dim=embed_dims[0]) | |
| self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0], | |
| embed_dim=embed_dims[1]) | |
| self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1], | |
| embed_dim=embed_dims[2]) | |
| self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2], | |
| embed_dim=embed_dims[3]) | |
| # transformer encoder | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
| cur = 0 | |
| self.block1 = nn.ModuleList([Block( | |
| dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, | |
| sr_ratio=sr_ratios[0]) | |
| for i in range(depths[0])]) | |
| self.norm1 = norm_layer(embed_dims[0]) | |
| cur += depths[0] | |
| self.block2 = nn.ModuleList([Block( | |
| dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, | |
| sr_ratio=sr_ratios[1]) | |
| for i in range(depths[1])]) | |
| self.norm2 = norm_layer(embed_dims[1]) | |
| cur += depths[1] | |
| self.block3 = nn.ModuleList([Block( | |
| dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, | |
| sr_ratio=sr_ratios[2]) | |
| for i in range(depths[2])]) | |
| self.norm3 = norm_layer(embed_dims[2]) | |
| cur += depths[2] | |
| self.block4 = nn.ModuleList([Block( | |
| dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, | |
| sr_ratio=sr_ratios[3]) | |
| for i in range(depths[3])]) | |
| self.norm4 = norm_layer(embed_dims[3]) | |
| # classification head | |
| # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity() | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| elif isinstance(m, nn.Conv2d): | |
| fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| fan_out //= m.groups | |
| m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| def init_weights(self, pretrained=None): | |
| if isinstance(pretrained, str): | |
| logger = 1 | |
| #load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger) | |
| def reset_drop_path(self, drop_path_rate): | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))] | |
| cur = 0 | |
| for i in range(self.depths[0]): | |
| self.block1[i].drop_path.drop_prob = dpr[cur + i] | |
| cur += self.depths[0] | |
| for i in range(self.depths[1]): | |
| self.block2[i].drop_path.drop_prob = dpr[cur + i] | |
| cur += self.depths[1] | |
| for i in range(self.depths[2]): | |
| self.block3[i].drop_path.drop_prob = dpr[cur + i] | |
| cur += self.depths[2] | |
| for i in range(self.depths[3]): | |
| self.block4[i].drop_path.drop_prob = dpr[cur + i] | |
| def freeze_patch_emb(self): | |
| self.patch_embed1.requires_grad = False | |
| def no_weight_decay(self): | |
| return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better | |
| def get_classifier(self): | |
| return self.head | |
| def reset_classifier(self, num_classes, global_pool=''): | |
| self.num_classes = num_classes | |
| self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
| def forward_features(self, x): | |
| B = x.shape[0] | |
| outs = [] | |
| # stage 1 | |
| x, H, W = self.patch_embed1(x) | |
| for i, blk in enumerate(self.block1): | |
| x = blk(x, H, W) | |
| x = self.norm1(x) | |
| x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
| outs.append(x) | |
| # stage 2 | |
| x, H, W = self.patch_embed2(x) | |
| for i, blk in enumerate(self.block2): | |
| x = blk(x, H, W) | |
| x = self.norm2(x) | |
| x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
| outs.append(x) | |
| # stage 3 | |
| x, H, W = self.patch_embed3(x) | |
| for i, blk in enumerate(self.block3): | |
| x = blk(x, H, W) | |
| x = self.norm3(x) | |
| x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
| outs.append(x) | |
| # stage 4 | |
| x, H, W = self.patch_embed4(x) | |
| for i, blk in enumerate(self.block4): | |
| x = blk(x, H, W) | |
| x = self.norm4(x) | |
| x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
| outs.append(x) | |
| return outs | |
| # return x.mean(dim=1) | |
| def forward(self, x): | |
| x = self.forward_features(x) | |
| # x = self.head(x) | |
| return x | |
| class DWConv(nn.Module): | |
| def __init__(self, dim=768): | |
| super(DWConv, self).__init__() | |
| self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) | |
| def forward(self, x, H, W): | |
| B, N, C = x.shape | |
| x = x.transpose(1, 2).view(B, C, H, W).contiguous() | |
| x = self.dwconv(x) | |
| x = x.flatten(2).transpose(1, 2) | |
| return x | |
| def _conv_filter(state_dict, patch_size=16): | |
| """ convert patch embedding weight from manual patchify + linear proj to conv""" | |
| out_dict = {} | |
| for k, v in state_dict.items(): | |
| if 'patch_embed.proj.weight' in k: | |
| v = v.reshape((v.shape[0], 3, patch_size, patch_size)) | |
| out_dict[k] = v | |
| return out_dict | |
| ## @register_model | |
| class pvt_v2_b0(PyramidVisionTransformerImpr): | |
| def __init__(self, **kwargs): | |
| super(pvt_v2_b0, self).__init__( | |
| patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], | |
| qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], | |
| drop_rate=0.0, drop_path_rate=0.1) | |
| ## @register_model | |
| class pvt_v2_b1(PyramidVisionTransformerImpr): | |
| def __init__(self, **kwargs): | |
| super(pvt_v2_b1, self).__init__( | |
| patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], | |
| qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], | |
| drop_rate=0.0, drop_path_rate=0.1) | |
| ## @register_model | |
| class pvt_v2_b2(PyramidVisionTransformerImpr): | |
| def __init__(self, in_channels=3, **kwargs): | |
| super(pvt_v2_b2, self).__init__( | |
| patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], | |
| qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], | |
| drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels) | |
| ## @register_model | |
| class pvt_v2_b3(PyramidVisionTransformerImpr): | |
| def __init__(self, **kwargs): | |
| super(pvt_v2_b3, self).__init__( | |
| patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], | |
| qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], | |
| drop_rate=0.0, drop_path_rate=0.1) | |
| ## @register_model | |
| class pvt_v2_b4(PyramidVisionTransformerImpr): | |
| def __init__(self, **kwargs): | |
| super(pvt_v2_b4, self).__init__( | |
| patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], | |
| qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], | |
| drop_rate=0.0, drop_path_rate=0.1) | |
| ## @register_model | |
| class pvt_v2_b5(PyramidVisionTransformerImpr): | |
| def __init__(self, **kwargs): | |
| super(pvt_v2_b5, self).__init__( | |
| patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], | |
| qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1], | |
| drop_rate=0.0, drop_path_rate=0.1) | |
| ### models/backbones/swin_v1.py | |
| # -------------------------------------------------------- | |
| # Swin Transformer | |
| # Copyright (c) 2021 Microsoft | |
| # Licensed under The MIT License [see LICENSE for details] | |
| # Written by Ze Liu, Yutong Lin, Yixuan Wei | |
| # -------------------------------------------------------- | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint as checkpoint | |
| import numpy as np | |
| from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
| # from config import Config | |
| # config = Config() | |
| class Mlp(nn.Module): | |
| """ Multilayer perceptron.""" | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.act = act_layer() | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| self.drop = nn.Dropout(drop) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| def window_partition(x, window_size): | |
| """ | |
| Args: | |
| x: (B, H, W, C) | |
| window_size (int): window size | |
| Returns: | |
| windows: (num_windows*B, window_size, window_size, C) | |
| """ | |
| B, H, W, C = x.shape | |
| x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | |
| windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
| return windows | |
| def window_reverse(windows, window_size, H, W): | |
| """ | |
| Args: | |
| windows: (num_windows*B, window_size, window_size, C) | |
| window_size (int): Window size | |
| H (int): Height of image | |
| W (int): Width of image | |
| Returns: | |
| x: (B, H, W, C) | |
| """ | |
| B = int(windows.shape[0] / (H * W / window_size / window_size)) | |
| x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | |
| x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
| return x | |
| class WindowAttention(nn.Module): | |
| """ Window based multi-head self attention (W-MSA) module with relative position bias. | |
| It supports both of shifted and non-shifted window. | |
| Args: | |
| dim (int): Number of input channels. | |
| window_size (tuple[int]): The height and width of the window. | |
| num_heads (int): Number of attention heads. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
| attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
| proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
| """ | |
| def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): | |
| super().__init__() | |
| self.dim = dim | |
| self.window_size = window_size # Wh, Ww | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = qk_scale or head_dim ** -0.5 | |
| # define a parameter table of relative position bias | |
| self.relative_position_bias_table = nn.Parameter( | |
| torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
| # get pair-wise relative position index for each token inside the window | |
| coords_h = torch.arange(self.window_size[0]) | |
| coords_w = torch.arange(self.window_size[1]) | |
| coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) # 2, Wh, Ww | |
| coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
| relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
| relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
| relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 | |
| relative_coords[:, :, 1] += self.window_size[1] - 1 | |
| relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | |
| relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
| self.register_buffer("relative_position_index", relative_position_index) | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.attn_drop_prob = attn_drop | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| trunc_normal_(self.relative_position_bias_table, std=.02) | |
| self.softmax = nn.Softmax(dim=-1) | |
| def forward(self, x, mask=None): | |
| """ Forward function. | |
| Args: | |
| x: input features with shape of (num_windows*B, N, C) | |
| mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | |
| """ | |
| B_, N, C = x.shape | |
| qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
| q = q * self.scale | |
| if config.SDPA_enabled: | |
| x = torch.nn.functional.scaled_dot_product_attention( | |
| q, k, v, | |
| attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False | |
| ).transpose(1, 2).reshape(B_, N, C) | |
| else: | |
| attn = (q @ k.transpose(-2, -1)) | |
| relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
| self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 | |
| ) # Wh*Ww, Wh*Ww, nH | |
| relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
| attn = attn + relative_position_bias.unsqueeze(0) | |
| if mask is not None: | |
| nW = mask.shape[0] | |
| attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) | |
| attn = attn.view(-1, self.num_heads, N, N) | |
| attn = self.softmax(attn) | |
| else: | |
| attn = self.softmax(attn) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class SwinTransformerBlock(nn.Module): | |
| """ Swin Transformer Block. | |
| Args: | |
| dim (int): Number of input channels. | |
| num_heads (int): Number of attention heads. | |
| window_size (int): Window size. | |
| shift_size (int): Shift size for SW-MSA. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
| drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
| act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| """ | |
| def __init__(self, dim, num_heads, window_size=7, shift_size=0, | |
| mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., | |
| act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| self.window_size = window_size | |
| self.shift_size = shift_size | |
| self.mlp_ratio = mlp_ratio | |
| assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" | |
| self.norm1 = norm_layer(dim) | |
| self.attn = WindowAttention( | |
| dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, | |
| qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| self.H = None | |
| self.W = None | |
| def forward(self, x, mask_matrix): | |
| """ Forward function. | |
| Args: | |
| x: Input feature, tensor size (B, H*W, C). | |
| H, W: Spatial resolution of the input feature. | |
| mask_matrix: Attention mask for cyclic shift. | |
| """ | |
| B, L, C = x.shape | |
| H, W = self.H, self.W | |
| assert L == H * W, "input feature has wrong size" | |
| shortcut = x | |
| x = self.norm1(x) | |
| x = x.view(B, H, W, C) | |
| # pad feature maps to multiples of window size | |
| pad_l = pad_t = 0 | |
| pad_r = (self.window_size - W % self.window_size) % self.window_size | |
| pad_b = (self.window_size - H % self.window_size) % self.window_size | |
| x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) | |
| _, Hp, Wp, _ = x.shape | |
| # cyclic shift | |
| if self.shift_size > 0: | |
| shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
| attn_mask = mask_matrix | |
| else: | |
| shifted_x = x | |
| attn_mask = None | |
| # partition windows | |
| x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C | |
| x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C | |
| # W-MSA/SW-MSA | |
| attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C | |
| # merge windows | |
| attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | |
| shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C | |
| # reverse cyclic shift | |
| if self.shift_size > 0: | |
| x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
| else: | |
| x = shifted_x | |
| if pad_r > 0 or pad_b > 0: | |
| x = x[:, :H, :W, :].contiguous() | |
| x = x.view(B, H * W, C) | |
| # FFN | |
| x = shortcut + self.drop_path(x) | |
| x = x + self.drop_path(self.mlp(self.norm2(x))) | |
| return x | |
| class PatchMerging(nn.Module): | |
| """ Patch Merging Layer | |
| Args: | |
| dim (int): Number of input channels. | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| """ | |
| def __init__(self, dim, norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.dim = dim | |
| self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
| self.norm = norm_layer(4 * dim) | |
| def forward(self, x, H, W): | |
| """ Forward function. | |
| Args: | |
| x: Input feature, tensor size (B, H*W, C). | |
| H, W: Spatial resolution of the input feature. | |
| """ | |
| B, L, C = x.shape | |
| assert L == H * W, "input feature has wrong size" | |
| x = x.view(B, H, W, C) | |
| # padding | |
| pad_input = (H % 2 == 1) or (W % 2 == 1) | |
| if pad_input: | |
| x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) | |
| x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C | |
| x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C | |
| x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C | |
| x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C | |
| x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C | |
| x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C | |
| x = self.norm(x) | |
| x = self.reduction(x) | |
| return x | |
| class BasicLayer(nn.Module): | |
| """ A basic Swin Transformer layer for one stage. | |
| Args: | |
| dim (int): Number of feature channels | |
| depth (int): Depths of this stage. | |
| num_heads (int): Number of attention head. | |
| window_size (int): Local window size. Default: 7. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
| drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
| use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
| """ | |
| def __init__(self, | |
| dim, | |
| depth, | |
| num_heads, | |
| window_size=7, | |
| mlp_ratio=4., | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop=0., | |
| attn_drop=0., | |
| drop_path=0., | |
| norm_layer=nn.LayerNorm, | |
| downsample=None, | |
| use_checkpoint=False): | |
| super().__init__() | |
| self.window_size = window_size | |
| self.shift_size = window_size // 2 | |
| self.depth = depth | |
| self.use_checkpoint = use_checkpoint | |
| # build blocks | |
| self.blocks = nn.ModuleList([ | |
| SwinTransformerBlock( | |
| dim=dim, | |
| num_heads=num_heads, | |
| window_size=window_size, | |
| shift_size=0 if (i % 2 == 0) else window_size // 2, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop=drop, | |
| attn_drop=attn_drop, | |
| drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
| norm_layer=norm_layer) | |
| for i in range(depth)]) | |
| # patch merging layer | |
| if downsample is not None: | |
| self.downsample = downsample(dim=dim, norm_layer=norm_layer) | |
| else: | |
| self.downsample = None | |
| def forward(self, x, H, W): | |
| """ Forward function. | |
| Args: | |
| x: Input feature, tensor size (B, H*W, C). | |
| H, W: Spatial resolution of the input feature. | |
| """ | |
| # calculate attention mask for SW-MSA | |
| # Turn int to torch.tensor for the compatiability with torch.compile in PyTorch 2.5. | |
| Hp = torch.ceil(torch.tensor(H) / self.window_size).to(torch.int64) * self.window_size | |
| Wp = torch.ceil(torch.tensor(W) / self.window_size).to(torch.int64) * self.window_size | |
| img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1 | |
| h_slices = (slice(0, -self.window_size), | |
| slice(-self.window_size, -self.shift_size), | |
| slice(-self.shift_size, None)) | |
| w_slices = (slice(0, -self.window_size), | |
| slice(-self.window_size, -self.shift_size), | |
| slice(-self.shift_size, None)) | |
| cnt = 0 | |
| for h in h_slices: | |
| for w in w_slices: | |
| img_mask[:, h, w, :] = cnt | |
| cnt += 1 | |
| mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 | |
| mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | |
| attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
| attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)).to(x.dtype) | |
| for blk in self.blocks: | |
| blk.H, blk.W = H, W | |
| if self.use_checkpoint: | |
| x = checkpoint.checkpoint(blk, x, attn_mask) | |
| else: | |
| x = blk(x, attn_mask) | |
| if self.downsample is not None: | |
| x_down = self.downsample(x, H, W) | |
| Wh, Ww = (H + 1) // 2, (W + 1) // 2 | |
| return x, H, W, x_down, Wh, Ww | |
| else: | |
| return x, H, W, x, H, W | |
| class PatchEmbed(nn.Module): | |
| """ Image to Patch Embedding | |
| Args: | |
| patch_size (int): Patch token size. Default: 4. | |
| in_channels (int): Number of input image channels. Default: 3. | |
| embed_dim (int): Number of linear projection output channels. Default: 96. | |
| norm_layer (nn.Module, optional): Normalization layer. Default: None | |
| """ | |
| def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None): | |
| super().__init__() | |
| patch_size = to_2tuple(patch_size) | |
| self.patch_size = patch_size | |
| self.in_channels = in_channels | |
| self.embed_dim = embed_dim | |
| self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size) | |
| if norm_layer is not None: | |
| self.norm = norm_layer(embed_dim) | |
| else: | |
| self.norm = None | |
| def forward(self, x): | |
| """Forward function.""" | |
| # padding | |
| _, _, H, W = x.size() | |
| if W % self.patch_size[1] != 0: | |
| x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) | |
| if H % self.patch_size[0] != 0: | |
| x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) | |
| x = self.proj(x) # B C Wh Ww | |
| if self.norm is not None: | |
| Wh, Ww = x.size(2), x.size(3) | |
| x = x.flatten(2).transpose(1, 2) | |
| x = self.norm(x) | |
| x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) | |
| return x | |
| class SwinTransformer(nn.Module): | |
| """ Swin Transformer backbone. | |
| A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - | |
| https://arxiv.org/pdf/2103.14030 | |
| Args: | |
| pretrain_img_size (int): Input image size for training the pretrained model, | |
| used in absolute postion embedding. Default 224. | |
| patch_size (int | tuple(int)): Patch size. Default: 4. | |
| in_channels (int): Number of input image channels. Default: 3. | |
| embed_dim (int): Number of linear projection output channels. Default: 96. | |
| depths (tuple[int]): Depths of each Swin Transformer stage. | |
| num_heads (tuple[int]): Number of attention head of each stage. | |
| window_size (int): Window size. Default: 7. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
| qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. | |
| drop_rate (float): Dropout rate. | |
| attn_drop_rate (float): Attention dropout rate. Default: 0. | |
| drop_path_rate (float): Stochastic depth rate. Default: 0.2. | |
| norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | |
| ape (bool): If True, add absolute position embedding to the patch embedding. Default: False. | |
| patch_norm (bool): If True, add normalization after patch embedding. Default: True. | |
| out_indices (Sequence[int]): Output from which stages. | |
| frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
| -1 means not freezing any parameters. | |
| use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
| """ | |
| def __init__(self, | |
| pretrain_img_size=224, | |
| patch_size=4, | |
| in_channels=3, | |
| embed_dim=96, | |
| depths=[2, 2, 6, 2], | |
| num_heads=[3, 6, 12, 24], | |
| window_size=7, | |
| mlp_ratio=4., | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop_rate=0., | |
| attn_drop_rate=0., | |
| drop_path_rate=0.2, | |
| norm_layer=nn.LayerNorm, | |
| ape=False, | |
| patch_norm=True, | |
| out_indices=(0, 1, 2, 3), | |
| frozen_stages=-1, | |
| use_checkpoint=False): | |
| super().__init__() | |
| self.pretrain_img_size = pretrain_img_size | |
| self.num_layers = len(depths) | |
| self.embed_dim = embed_dim | |
| self.ape = ape | |
| self.patch_norm = patch_norm | |
| self.out_indices = out_indices | |
| self.frozen_stages = frozen_stages | |
| # split image into non-overlapping patches | |
| self.patch_embed = PatchEmbed( | |
| patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim, | |
| norm_layer=norm_layer if self.patch_norm else None) | |
| # absolute position embedding | |
| if self.ape: | |
| pretrain_img_size = to_2tuple(pretrain_img_size) | |
| patch_size = to_2tuple(patch_size) | |
| patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]] | |
| self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])) | |
| trunc_normal_(self.absolute_pos_embed, std=.02) | |
| self.pos_drop = nn.Dropout(p=drop_rate) | |
| # stochastic depth | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
| # build layers | |
| self.layers = nn.ModuleList() | |
| for i_layer in range(self.num_layers): | |
| layer = BasicLayer( | |
| dim=int(embed_dim * 2 ** i_layer), | |
| depth=depths[i_layer], | |
| num_heads=num_heads[i_layer], | |
| window_size=window_size, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop=drop_rate, | |
| attn_drop=attn_drop_rate, | |
| drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], | |
| norm_layer=norm_layer, | |
| downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, | |
| use_checkpoint=use_checkpoint) | |
| self.layers.append(layer) | |
| num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] | |
| self.num_features = num_features | |
| # add a norm layer for each output | |
| for i_layer in out_indices: | |
| layer = norm_layer(num_features[i_layer]) | |
| layer_name = f'norm{i_layer}' | |
| self.add_module(layer_name, layer) | |
| self._freeze_stages() | |
| def _freeze_stages(self): | |
| if self.frozen_stages >= 0: | |
| self.patch_embed.eval() | |
| for param in self.patch_embed.parameters(): | |
| param.requires_grad = False | |
| if self.frozen_stages >= 1 and self.ape: | |
| self.absolute_pos_embed.requires_grad = False | |
| if self.frozen_stages >= 2: | |
| self.pos_drop.eval() | |
| for i in range(0, self.frozen_stages - 1): | |
| m = self.layers[i] | |
| m.eval() | |
| for param in m.parameters(): | |
| param.requires_grad = False | |
| def forward(self, x): | |
| """Forward function.""" | |
| x = self.patch_embed(x) | |
| Wh, Ww = x.size(2), x.size(3) | |
| if self.ape: | |
| # interpolate the position embedding to the corresponding size | |
| absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic') | |
| x = (x + absolute_pos_embed) # B Wh*Ww C | |
| outs = []#x.contiguous()] | |
| x = x.flatten(2).transpose(1, 2) | |
| x = self.pos_drop(x) | |
| for i in range(self.num_layers): | |
| layer = self.layers[i] | |
| x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) | |
| if i in self.out_indices: | |
| norm_layer = getattr(self, f'norm{i}') | |
| x_out = norm_layer(x_out) | |
| out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() | |
| outs.append(out) | |
| return tuple(outs) | |
| def train(self, mode=True): | |
| """Convert the model into training mode while keep layers freezed.""" | |
| super(SwinTransformer, self).train(mode) | |
| self._freeze_stages() | |
| def swin_v1_t(): | |
| model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7) | |
| return model | |
| def swin_v1_s(): | |
| model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7) | |
| return model | |
| def swin_v1_b(): | |
| model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12) | |
| return model | |
| def swin_v1_l(): | |
| model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12) | |
| return model | |
| ### models/modules/deform_conv.py | |
| import torch | |
| import torch.nn as nn | |
| from torchvision.ops import deform_conv2d | |
| class DeformableConv2d(nn.Module): | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| bias=False): | |
| super(DeformableConv2d, self).__init__() | |
| assert type(kernel_size) == tuple or type(kernel_size) == int | |
| kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size) | |
| self.stride = stride if type(stride) == tuple else (stride, stride) | |
| self.padding = padding | |
| self.offset_conv = nn.Conv2d(in_channels, | |
| 2 * kernel_size[0] * kernel_size[1], | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| padding=self.padding, | |
| bias=True) | |
| nn.init.constant_(self.offset_conv.weight, 0.) | |
| nn.init.constant_(self.offset_conv.bias, 0.) | |
| self.modulator_conv = nn.Conv2d(in_channels, | |
| 1 * kernel_size[0] * kernel_size[1], | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| padding=self.padding, | |
| bias=True) | |
| nn.init.constant_(self.modulator_conv.weight, 0.) | |
| nn.init.constant_(self.modulator_conv.bias, 0.) | |
| self.regular_conv = nn.Conv2d(in_channels, | |
| out_channels=out_channels, | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| padding=self.padding, | |
| bias=bias) | |
| def forward(self, x): | |
| #h, w = x.shape[2:] | |
| #max_offset = max(h, w)/4. | |
| offset = self.offset_conv(x)#.clamp(-max_offset, max_offset) | |
| modulator = 2. * torch.sigmoid(self.modulator_conv(x)) | |
| x = deform_conv2d( | |
| input=x, | |
| offset=offset, | |
| weight=self.regular_conv.weight, | |
| bias=self.regular_conv.bias, | |
| padding=self.padding, | |
| mask=modulator, | |
| stride=self.stride, | |
| ) | |
| return x | |
| ### utils.py | |
| import torch.nn as nn | |
| def build_act_layer(act_layer): | |
| if act_layer == 'ReLU': | |
| return nn.ReLU(inplace=True) | |
| elif act_layer == 'SiLU': | |
| return nn.SiLU(inplace=True) | |
| elif act_layer == 'GELU': | |
| return nn.GELU() | |
| raise NotImplementedError(f'build_act_layer does not support {act_layer}') | |
| def build_norm_layer(dim, | |
| norm_layer, | |
| in_format='channels_last', | |
| out_format='channels_last', | |
| eps=1e-6): | |
| layers = [] | |
| if norm_layer == 'BN': | |
| if in_format == 'channels_last': | |
| layers.append(to_channels_first()) | |
| layers.append(nn.BatchNorm2d(dim)) | |
| if out_format == 'channels_last': | |
| layers.append(to_channels_last()) | |
| elif norm_layer == 'LN': | |
| if in_format == 'channels_first': | |
| layers.append(to_channels_last()) | |
| layers.append(nn.LayerNorm(dim, eps=eps)) | |
| if out_format == 'channels_first': | |
| layers.append(to_channels_first()) | |
| else: | |
| raise NotImplementedError( | |
| f'build_norm_layer does not support {norm_layer}') | |
| return nn.Sequential(*layers) | |
| class to_channels_first(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, x): | |
| return x.permute(0, 3, 1, 2) | |
| class to_channels_last(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, x): | |
| return x.permute(0, 2, 3, 1) | |
| ### dataset.py | |
| _class_labels_TR_sorted = ( | |
| 'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, ' | |
| 'BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, ' | |
| 'CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, ' | |
| 'Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, ' | |
| 'Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, ' | |
| 'Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, ' | |
| 'KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, ' | |
| 'Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, ' | |
| 'OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, ' | |
| 'RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, ' | |
| 'ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, ' | |
| 'Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, ' | |
| 'TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, ' | |
| 'UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht' | |
| ) | |
| class_labels_TR_sorted = _class_labels_TR_sorted.split(', ') | |
| ### models/backbones/build_backbones.py | |
| import torch | |
| import torch.nn as nn | |
| from collections import OrderedDict | |
| from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights | |
| # from models.pvt_v2 import pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b5 | |
| # from models.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l | |
| # from config import Config | |
| config = Config() | |
| def build_backbone(bb_name, pretrained=True, params_settings=''): | |
| if bb_name == 'vgg16': | |
| bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0] | |
| bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]})) | |
| elif bb_name == 'vgg16bn': | |
| bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0] | |
| bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]})) | |
| elif bb_name == 'resnet50': | |
| bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children()) | |
| bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]})) | |
| else: | |
| bb = eval('{}({})'.format(bb_name, params_settings)) | |
| if pretrained: | |
| bb = load_weights(bb, bb_name) | |
| return bb | |
| def load_weights(model, model_name): | |
| save_model = torch.load(config.weights[model_name], map_location='cpu') | |
| model_dict = model.state_dict() | |
| state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()} | |
| # to ignore the weights with mismatched size when I modify the backbone itself. | |
| if not state_dict: | |
| save_model_keys = list(save_model.keys()) | |
| sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None | |
| state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()} | |
| if not state_dict or not sub_item: | |
| print('Weights are not successully loaded. Check the state dict of weights file.') | |
| return None | |
| else: | |
| print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item)) | |
| model_dict.update(state_dict) | |
| model.load_state_dict(model_dict) | |
| return model | |
| ### models/modules/decoder_blocks.py | |
| import torch | |
| import torch.nn as nn | |
| # from models.aspp import ASPP, ASPPDeformable | |
| # from config import Config | |
| # config = Config() | |
| class BasicDecBlk(nn.Module): | |
| def __init__(self, in_channels=64, out_channels=64, inter_channels=64): | |
| super(BasicDecBlk, self).__init__() | |
| inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64 | |
| self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1) | |
| self.relu_in = nn.ReLU(inplace=True) | |
| if config.dec_att == 'ASPP': | |
| self.dec_att = ASPP(in_channels=inter_channels) | |
| elif config.dec_att == 'ASPPDeformable': | |
| self.dec_att = ASPPDeformable(in_channels=inter_channels) | |
| self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1) | |
| self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity() | |
| self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity() | |
| def forward(self, x): | |
| x = self.conv_in(x) | |
| x = self.bn_in(x) | |
| x = self.relu_in(x) | |
| if hasattr(self, 'dec_att'): | |
| x = self.dec_att(x) | |
| x = self.conv_out(x) | |
| x = self.bn_out(x) | |
| return x | |
| class ResBlk(nn.Module): | |
| def __init__(self, in_channels=64, out_channels=None, inter_channels=64): | |
| super(ResBlk, self).__init__() | |
| if out_channels is None: | |
| out_channels = in_channels | |
| inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64 | |
| self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1) | |
| self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity() | |
| self.relu_in = nn.ReLU(inplace=True) | |
| if config.dec_att == 'ASPP': | |
| self.dec_att = ASPP(in_channels=inter_channels) | |
| elif config.dec_att == 'ASPPDeformable': | |
| self.dec_att = ASPPDeformable(in_channels=inter_channels) | |
| self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1) | |
| self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity() | |
| self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0) | |
| def forward(self, x): | |
| _x = self.conv_resi(x) | |
| x = self.conv_in(x) | |
| x = self.bn_in(x) | |
| x = self.relu_in(x) | |
| if hasattr(self, 'dec_att'): | |
| x = self.dec_att(x) | |
| x = self.conv_out(x) | |
| x = self.bn_out(x) | |
| return x + _x | |
| ### models/modules/lateral_blocks.py | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from functools import partial | |
| # from config import Config | |
| # config = Config() | |
| class BasicLatBlk(nn.Module): | |
| def __init__(self, in_channels=64, out_channels=64, inter_channels=64): | |
| super(BasicLatBlk, self).__init__() | |
| inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64 | |
| self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0) | |
| def forward(self, x): | |
| x = self.conv(x) | |
| return x | |
| ### models/modules/aspp.py | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| # from models.deform_conv import DeformableConv2d | |
| # from config import Config | |
| # config = Config() | |
| class _ASPPModule(nn.Module): | |
| def __init__(self, in_channels, planes, kernel_size, padding, dilation): | |
| super(_ASPPModule, self).__init__() | |
| self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size, | |
| stride=1, padding=padding, dilation=dilation, bias=False) | |
| self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity() | |
| self.relu = nn.ReLU(inplace=True) | |
| def forward(self, x): | |
| x = self.atrous_conv(x) | |
| x = self.bn(x) | |
| return self.relu(x) | |
| class ASPP(nn.Module): | |
| def __init__(self, in_channels=64, out_channels=None, output_stride=16): | |
| super(ASPP, self).__init__() | |
| self.down_scale = 1 | |
| if out_channels is None: | |
| out_channels = in_channels | |
| self.in_channelster = 256 // self.down_scale | |
| if output_stride == 16: | |
| dilations = [1, 6, 12, 18] | |
| elif output_stride == 8: | |
| dilations = [1, 12, 24, 36] | |
| else: | |
| raise NotImplementedError | |
| self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0]) | |
| self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1]) | |
| self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2]) | |
| self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3]) | |
| self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), | |
| nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False), | |
| nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(), | |
| nn.ReLU(inplace=True)) | |
| self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity() | |
| self.relu = nn.ReLU(inplace=True) | |
| self.dropout = nn.Dropout(0.5) | |
| def forward(self, x): | |
| x1 = self.aspp1(x) | |
| x2 = self.aspp2(x) | |
| x3 = self.aspp3(x) | |
| x4 = self.aspp4(x) | |
| x5 = self.global_avg_pool(x) | |
| x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True) | |
| x = torch.cat((x1, x2, x3, x4, x5), dim=1) | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.relu(x) | |
| return self.dropout(x) | |
| ##################### Deformable | |
| class _ASPPModuleDeformable(nn.Module): | |
| def __init__(self, in_channels, planes, kernel_size, padding): | |
| super(_ASPPModuleDeformable, self).__init__() | |
| self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size, | |
| stride=1, padding=padding, bias=False) | |
| self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity() | |
| self.relu = nn.ReLU(inplace=True) | |
| def forward(self, x): | |
| x = self.atrous_conv(x) | |
| x = self.bn(x) | |
| return self.relu(x) | |
| class ASPPDeformable(nn.Module): | |
| def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]): | |
| super(ASPPDeformable, self).__init__() | |
| self.down_scale = 1 | |
| if out_channels is None: | |
| out_channels = in_channels | |
| self.in_channelster = 256 // self.down_scale | |
| self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0) | |
| self.aspp_deforms = nn.ModuleList([ | |
| _ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes | |
| ]) | |
| self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), | |
| nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False), | |
| nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(), | |
| nn.ReLU(inplace=True)) | |
| self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity() | |
| self.relu = nn.ReLU(inplace=True) | |
| self.dropout = nn.Dropout(0.5) | |
| def forward(self, x): | |
| x1 = self.aspp1(x) | |
| x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms] | |
| x5 = self.global_avg_pool(x) | |
| x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True) | |
| x = torch.cat((x1, *x_aspp_deforms, x5), dim=1) | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.relu(x) | |
| return self.dropout(x) | |
| ### models/refinement/refiner.py | |
| import torch | |
| import torch.nn as nn | |
| from collections import OrderedDict | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torchvision.models import vgg16, vgg16_bn | |
| from torchvision.models import resnet50 | |
| # from config import Config | |
| # from dataset import class_labels_TR_sorted | |
| # from models.build_backbone import build_backbone | |
| # from models.decoder_blocks import BasicDecBlk | |
| # from models.lateral_blocks import BasicLatBlk | |
| # from models.ing import * | |
| # from models.stem_layer import StemLayer | |
| class RefinerPVTInChannels4(nn.Module): | |
| def __init__(self, in_channels=3+1): | |
| super(RefinerPVTInChannels4, self).__init__() | |
| self.config = Config() | |
| self.epoch = 1 | |
| self.bb = build_backbone(self.config.bb, params_settings='in_channels=4') | |
| lateral_channels_in_collection = { | |
| 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64], | |
| 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64], | |
| 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192], | |
| } | |
| channels = lateral_channels_in_collection[self.config.bb] | |
| self.squeeze_module = BasicDecBlk(channels[0], channels[0]) | |
| self.decoder = Decoder(channels) | |
| if 0: | |
| for key, value in self.named_parameters(): | |
| if 'bb.' in key: | |
| value.requires_grad = False | |
| def forward(self, x): | |
| if isinstance(x, list): | |
| x = torch.cat(x, dim=1) | |
| ########## Encoder ########## | |
| if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']: | |
| x1 = self.bb.conv1(x) | |
| x2 = self.bb.conv2(x1) | |
| x3 = self.bb.conv3(x2) | |
| x4 = self.bb.conv4(x3) | |
| else: | |
| x1, x2, x3, x4 = self.bb(x) | |
| x4 = self.squeeze_module(x4) | |
| ########## Decoder ########## | |
| features = [x, x1, x2, x3, x4] | |
| scaled_preds = self.decoder(features) | |
| return scaled_preds | |
| class Refiner(nn.Module): | |
| def __init__(self, in_channels=3+1): | |
| super(Refiner, self).__init__() | |
| self.config = Config() | |
| self.epoch = 1 | |
| self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN') | |
| self.bb = build_backbone(self.config.bb) | |
| lateral_channels_in_collection = { | |
| 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64], | |
| 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64], | |
| 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192], | |
| } | |
| channels = lateral_channels_in_collection[self.config.bb] | |
| self.squeeze_module = BasicDecBlk(channels[0], channels[0]) | |
| self.decoder = Decoder(channels) | |
| if 0: | |
| for key, value in self.named_parameters(): | |
| if 'bb.' in key: | |
| value.requires_grad = False | |
| def forward(self, x): | |
| if isinstance(x, list): | |
| x = torch.cat(x, dim=1) | |
| x = self.stem_layer(x) | |
| ########## Encoder ########## | |
| if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']: | |
| x1 = self.bb.conv1(x) | |
| x2 = self.bb.conv2(x1) | |
| x3 = self.bb.conv3(x2) | |
| x4 = self.bb.conv4(x3) | |
| else: | |
| x1, x2, x3, x4 = self.bb(x) | |
| x4 = self.squeeze_module(x4) | |
| ########## Decoder ########## | |
| features = [x, x1, x2, x3, x4] | |
| scaled_preds = self.decoder(features) | |
| return scaled_preds | |
| class Decoder(nn.Module): | |
| def __init__(self, channels): | |
| super(Decoder, self).__init__() | |
| self.config = Config() | |
| DecoderBlock = eval('BasicDecBlk') | |
| LateralBlock = eval('BasicLatBlk') | |
| self.decoder_block4 = DecoderBlock(channels[0], channels[1]) | |
| self.decoder_block3 = DecoderBlock(channels[1], channels[2]) | |
| self.decoder_block2 = DecoderBlock(channels[2], channels[3]) | |
| self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2) | |
| self.lateral_block4 = LateralBlock(channels[1], channels[1]) | |
| self.lateral_block3 = LateralBlock(channels[2], channels[2]) | |
| self.lateral_block2 = LateralBlock(channels[3], channels[3]) | |
| if self.config.ms_supervision: | |
| self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0) | |
| self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0) | |
| self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0) | |
| self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0)) | |
| def forward(self, features): | |
| x, x1, x2, x3, x4 = features | |
| outs = [] | |
| p4 = self.decoder_block4(x4) | |
| _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True) | |
| _p3 = _p4 + self.lateral_block4(x3) | |
| p3 = self.decoder_block3(_p3) | |
| _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True) | |
| _p2 = _p3 + self.lateral_block3(x2) | |
| p2 = self.decoder_block2(_p2) | |
| _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True) | |
| _p1 = _p2 + self.lateral_block2(x1) | |
| _p1 = self.decoder_block1(_p1) | |
| _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True) | |
| p1_out = self.conv_out1(_p1) | |
| if self.config.ms_supervision: | |
| outs.append(self.conv_ms_spvn_4(p4)) | |
| outs.append(self.conv_ms_spvn_3(p3)) | |
| outs.append(self.conv_ms_spvn_2(p2)) | |
| outs.append(p1_out) | |
| return outs | |
| class RefUNet(nn.Module): | |
| # Refinement | |
| def __init__(self, in_channels=3+1): | |
| super(RefUNet, self).__init__() | |
| self.encoder_1 = nn.Sequential( | |
| nn.Conv2d(in_channels, 64, 3, 1, 1), | |
| nn.Conv2d(64, 64, 3, 1, 1), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU(inplace=True) | |
| ) | |
| self.encoder_2 = nn.Sequential( | |
| nn.MaxPool2d(2, 2, ceil_mode=True), | |
| nn.Conv2d(64, 64, 3, 1, 1), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU(inplace=True) | |
| ) | |
| self.encoder_3 = nn.Sequential( | |
| nn.MaxPool2d(2, 2, ceil_mode=True), | |
| nn.Conv2d(64, 64, 3, 1, 1), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU(inplace=True) | |
| ) | |
| self.encoder_4 = nn.Sequential( | |
| nn.MaxPool2d(2, 2, ceil_mode=True), | |
| nn.Conv2d(64, 64, 3, 1, 1), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU(inplace=True) | |
| ) | |
| self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True) | |
| ##### | |
| self.decoder_5 = nn.Sequential( | |
| nn.Conv2d(64, 64, 3, 1, 1), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU(inplace=True) | |
| ) | |
| ##### | |
| self.decoder_4 = nn.Sequential( | |
| nn.Conv2d(128, 64, 3, 1, 1), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU(inplace=True) | |
| ) | |
| self.decoder_3 = nn.Sequential( | |
| nn.Conv2d(128, 64, 3, 1, 1), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU(inplace=True) | |
| ) | |
| self.decoder_2 = nn.Sequential( | |
| nn.Conv2d(128, 64, 3, 1, 1), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU(inplace=True) | |
| ) | |
| self.decoder_1 = nn.Sequential( | |
| nn.Conv2d(128, 64, 3, 1, 1), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU(inplace=True) | |
| ) | |
| self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1) | |
| self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) | |
| def forward(self, x): | |
| outs = [] | |
| if isinstance(x, list): | |
| x = torch.cat(x, dim=1) | |
| hx = x | |
| hx1 = self.encoder_1(hx) | |
| hx2 = self.encoder_2(hx1) | |
| hx3 = self.encoder_3(hx2) | |
| hx4 = self.encoder_4(hx3) | |
| hx = self.decoder_5(self.pool4(hx4)) | |
| hx = torch.cat((self.upscore2(hx), hx4), 1) | |
| d4 = self.decoder_4(hx) | |
| hx = torch.cat((self.upscore2(d4), hx3), 1) | |
| d3 = self.decoder_3(hx) | |
| hx = torch.cat((self.upscore2(d3), hx2), 1) | |
| d2 = self.decoder_2(hx) | |
| hx = torch.cat((self.upscore2(d2), hx1), 1) | |
| d1 = self.decoder_1(hx) | |
| x = self.conv_d0(d1) | |
| outs.append(x) | |
| return outs | |
| ### models/stem_layer.py | |
| import torch.nn as nn | |
| # from utils import build_act_layer, build_norm_layer | |
| class StemLayer(nn.Module): | |
| r""" Stem layer of InternImage | |
| Args: | |
| in_channels (int): number of input channels | |
| out_channels (int): number of output channels | |
| act_layer (str): activation layer | |
| norm_layer (str): normalization layer | |
| """ | |
| def __init__(self, | |
| in_channels=3+1, | |
| inter_channels=48, | |
| out_channels=96, | |
| act_layer='GELU', | |
| norm_layer='BN'): | |
| super().__init__() | |
| self.conv1 = nn.Conv2d(in_channels, | |
| inter_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| self.norm1 = build_norm_layer( | |
| inter_channels, norm_layer, 'channels_first', 'channels_first' | |
| ) | |
| self.act = build_act_layer(act_layer) | |
| self.conv2 = nn.Conv2d(inter_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| self.norm2 = build_norm_layer( | |
| out_channels, norm_layer, 'channels_first', 'channels_first' | |
| ) | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.norm1(x) | |
| x = self.act(x) | |
| x = self.conv2(x) | |
| x = self.norm2(x) | |
| return x | |
| ### models/birefnet.py | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from kornia.filters import laplacian | |
| from transformers import PreTrainedModel | |
| from einops import rearrange | |
| # from config import Config | |
| # from dataset import class_labels_TR_sorted | |
| # from models.build_backbone import build_backbone | |
| # from models.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk | |
| # from models.lateral_blocks import BasicLatBlk | |
| # from models.aspp import ASPP, ASPPDeformable | |
| # from models.ing import * | |
| # from models.refiner import Refiner, RefinerPVTInChannels4, RefUNet | |
| # from models.stem_layer import StemLayer | |
| from BiRefNet_config import BiRefNetConfig | |
| def image2patches(image, grid_h=2, grid_w=2, patch_ref=None, transformation='b c (hg h) (wg w) -> (b hg wg) c h w'): | |
| if patch_ref is not None: | |
| grid_h, grid_w = image.shape[-2] // patch_ref.shape[-2], image.shape[-1] // patch_ref.shape[-1] | |
| patches = rearrange(image, transformation, hg=grid_h, wg=grid_w) | |
| return patches | |
| def patches2image(patches, grid_h=2, grid_w=2, patch_ref=None, transformation='(b hg wg) c h w -> b c (hg h) (wg w)'): | |
| if patch_ref is not None: | |
| grid_h, grid_w = patch_ref.shape[-2] // patches[0].shape[-2], patch_ref.shape[-1] // patches[0].shape[-1] | |
| image = rearrange(patches, transformation, hg=grid_h, wg=grid_w) | |
| return image | |
| class BiRefNet( | |
| PreTrainedModel | |
| ): | |
| config_class = BiRefNetConfig | |
| def __init__(self, bb_pretrained=True, config=BiRefNetConfig()): | |
| super(BiRefNet, self).__init__(config) | |
| bb_pretrained = config.bb_pretrained | |
| self.config = Config() | |
| self.epoch = 1 | |
| self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained) | |
| channels = self.config.lateral_channels_in_collection | |
| if self.config.auxiliary_classification: | |
| self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
| self.cls_head = nn.Sequential( | |
| nn.Linear(channels[0], len(class_labels_TR_sorted)) | |
| ) | |
| if self.config.squeeze_block: | |
| self.squeeze_module = nn.Sequential(*[ | |
| eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0]) | |
| for _ in range(eval(self.config.squeeze_block.split('_x')[1])) | |
| ]) | |
| self.decoder = Decoder(channels) | |
| if self.config.ender: | |
| self.dec_end = nn.Sequential( | |
| nn.Conv2d(1, 16, 3, 1, 1), | |
| nn.Conv2d(16, 1, 3, 1, 1), | |
| nn.ReLU(inplace=True), | |
| ) | |
| # refine patch-level segmentation | |
| if self.config.refine: | |
| if self.config.refine == 'itself': | |
| self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN') | |
| else: | |
| self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1')) | |
| if self.config.freeze_bb: | |
| # Freeze the backbone... | |
| print(self.named_parameters()) | |
| for key, value in self.named_parameters(): | |
| if 'bb.' in key and 'refiner.' not in key: | |
| value.requires_grad = False | |
| def forward_enc(self, x): | |
| if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']: | |
| x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3) | |
| else: | |
| x1, x2, x3, x4 = self.bb(x) | |
| if self.config.mul_scl_ipt == 'cat': | |
| B, C, H, W = x.shape | |
| x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True)) | |
| x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1) | |
| x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1) | |
| x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1) | |
| x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1) | |
| elif self.config.mul_scl_ipt == 'add': | |
| B, C, H, W = x.shape | |
| x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True)) | |
| x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True) | |
| x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True) | |
| x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True) | |
| x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True) | |
| class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None | |
| if self.config.cxt: | |
| x4 = torch.cat( | |
| ( | |
| *[ | |
| F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True), | |
| F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True), | |
| F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True), | |
| ][-len(self.config.cxt):], | |
| x4 | |
| ), | |
| dim=1 | |
| ) | |
| return (x1, x2, x3, x4), class_preds | |
| def forward_ori(self, x): | |
| ########## Encoder ########## | |
| (x1, x2, x3, x4), class_preds = self.forward_enc(x) | |
| if self.config.squeeze_block: | |
| x4 = self.squeeze_module(x4) | |
| ########## Decoder ########## | |
| features = [x, x1, x2, x3, x4] | |
| if self.training and self.config.out_ref: | |
| features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5)) | |
| scaled_preds = self.decoder(features) | |
| return scaled_preds, class_preds | |
| def forward(self, x): | |
| scaled_preds, class_preds = self.forward_ori(x) | |
| class_preds_lst = [class_preds] | |
| return [scaled_preds, class_preds_lst] if self.training else scaled_preds | |
| class Decoder(nn.Module): | |
| def __init__(self, channels): | |
| super(Decoder, self).__init__() | |
| self.config = Config() | |
| DecoderBlock = eval(self.config.dec_blk) | |
| LateralBlock = eval(self.config.lat_blk) | |
| if self.config.dec_ipt: | |
| self.split = self.config.dec_ipt_split | |
| N_dec_ipt = 64 | |
| DBlock = SimpleConvs | |
| ic = 64 | |
| ipt_cha_opt = 1 | |
| self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic) | |
| self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic) | |
| self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic) | |
| self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic) | |
| self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic) | |
| else: | |
| self.split = None | |
| self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1]) | |
| self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2]) | |
| self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]) | |
| self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2) | |
| self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0)) | |
| self.lateral_block4 = LateralBlock(channels[1], channels[1]) | |
| self.lateral_block3 = LateralBlock(channels[2], channels[2]) | |
| self.lateral_block2 = LateralBlock(channels[3], channels[3]) | |
| if self.config.ms_supervision: | |
| self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0) | |
| self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0) | |
| self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0) | |
| if self.config.out_ref: | |
| _N = 16 | |
| self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True)) | |
| self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True)) | |
| self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True)) | |
| self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
| self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
| self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
| self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
| self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
| self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
| def forward(self, features): | |
| if self.training and self.config.out_ref: | |
| outs_gdt_pred = [] | |
| outs_gdt_label = [] | |
| x, x1, x2, x3, x4, gdt_gt = features | |
| else: | |
| x, x1, x2, x3, x4 = features | |
| outs = [] | |
| if self.config.dec_ipt: | |
| patches_batch = image2patches(x, patch_ref=x4, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x | |
| x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1) | |
| p4 = self.decoder_block4(x4) | |
| m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision and self.training else None | |
| if self.config.out_ref: | |
| p4_gdt = self.gdt_convs_4(p4) | |
| if self.training: | |
| # >> GT: | |
| m4_dia = m4 | |
| gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True) | |
| outs_gdt_label.append(gdt_label_main_4) | |
| # >> Pred: | |
| gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt) | |
| outs_gdt_pred.append(gdt_pred_4) | |
| gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid() | |
| # >> Finally: | |
| p4 = p4 * gdt_attn_4 | |
| _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True) | |
| _p3 = _p4 + self.lateral_block4(x3) | |
| if self.config.dec_ipt: | |
| patches_batch = image2patches(x, patch_ref=_p3, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x | |
| _p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1) | |
| p3 = self.decoder_block3(_p3) | |
| m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision and self.training else None | |
| if self.config.out_ref: | |
| p3_gdt = self.gdt_convs_3(p3) | |
| if self.training: | |
| # >> GT: | |
| # m3 --dilation--> m3_dia | |
| # G_3^gt * m3_dia --> G_3^m, which is the label of gradient | |
| m3_dia = m3 | |
| gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True) | |
| outs_gdt_label.append(gdt_label_main_3) | |
| # >> Pred: | |
| # p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx | |
| # F_3^G --sigmoid--> A_3^G | |
| gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt) | |
| outs_gdt_pred.append(gdt_pred_3) | |
| gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid() | |
| # >> Finally: | |
| # p3 = p3 * A_3^G | |
| p3 = p3 * gdt_attn_3 | |
| _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True) | |
| _p2 = _p3 + self.lateral_block3(x2) | |
| if self.config.dec_ipt: | |
| patches_batch = image2patches(x, patch_ref=_p2, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x | |
| _p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1) | |
| p2 = self.decoder_block2(_p2) | |
| m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision and self.training else None | |
| if self.config.out_ref: | |
| p2_gdt = self.gdt_convs_2(p2) | |
| if self.training: | |
| # >> GT: | |
| m2_dia = m2 | |
| gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True) | |
| outs_gdt_label.append(gdt_label_main_2) | |
| # >> Pred: | |
| gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt) | |
| outs_gdt_pred.append(gdt_pred_2) | |
| gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid() | |
| # >> Finally: | |
| p2 = p2 * gdt_attn_2 | |
| _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True) | |
| _p1 = _p2 + self.lateral_block2(x1) | |
| if self.config.dec_ipt: | |
| patches_batch = image2patches(x, patch_ref=_p1, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x | |
| _p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1) | |
| _p1 = self.decoder_block1(_p1) | |
| _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True) | |
| if self.config.dec_ipt: | |
| patches_batch = image2patches(x, patch_ref=_p1, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x | |
| _p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1) | |
| p1_out = self.conv_out1(_p1) | |
| if self.config.ms_supervision and self.training: | |
| outs.append(m4) | |
| outs.append(m3) | |
| outs.append(m2) | |
| outs.append(p1_out) | |
| return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs) | |
| class SimpleConvs(nn.Module): | |
| def __init__( | |
| self, in_channels: int, out_channels: int, inter_channels=64 | |
| ) -> None: | |
| super().__init__() | |
| self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1) | |
| self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1) | |
| def forward(self, x): | |
| return self.conv_out(self.conv1(x)) | |