Spaces:
Running
Running
| import argparse | |
| import json | |
| import os | |
| import torch | |
| from huggingface_hub import CommitOperationAdd, HfApi, hf_hub_download | |
| from safetensors.torch import save_file | |
| def rename(pt_filename) -> str: | |
| local = pt_filename.replace(".bin", ".safetensors") | |
| local = local.replace("pytorch_model", "model") | |
| return local | |
| def convert_multi(model_id) -> str: | |
| local_filenames = [] | |
| try: | |
| filename = hf_hub_download( | |
| repo_id=model_id, filename="pytorch_model.bin.index.json" | |
| ) | |
| with open(filename, "r") as f: | |
| data = json.load(f) | |
| filenames = set(data["weight_map"].values()) | |
| for filename in filenames: | |
| cached_filename = hf_hub_download(repo_id=model_id, filename=filename) | |
| loaded = torch.load(cached_filename) | |
| local = rename(filename) | |
| save_file(loaded, local, metadata={"format": "pt"}) | |
| local_filenames.append(local) | |
| index = "model.safetensors.index.json" | |
| with open(index, "w") as f: | |
| newdata = {k: v for k, v in data.items()} | |
| newmap = {k: rename(v) for k, v in data["weight_map"].items()} | |
| newdata["weight_map"] = newmap | |
| json.dump(newdata, f) | |
| local_filenames.append(index) | |
| api = HfApi() | |
| operations = [ | |
| CommitOperationAdd(path_in_repo=local, path_or_fileobj=local) | |
| for local in local_filenames | |
| ] | |
| return api.create_commit( | |
| repo_id=model_id, | |
| operations=operations, | |
| commit_message="Adding `safetensors` variant of this model", | |
| create_pr=True, | |
| ) | |
| finally: | |
| for local in local_filenames: | |
| os.remove(local) | |
| def convert_single(model_id) -> str: | |
| local = "model.safetensors" | |
| try: | |
| filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin") | |
| loaded = torch.load(filename) | |
| save_file(loaded, local, metadata={"format": "pt"}) | |
| api = HfApi() | |
| return api.upload_file( | |
| path_or_fileobj=local, | |
| create_pr=True, | |
| path_in_repo=local, | |
| repo_id=model_id, | |
| ) | |
| finally: | |
| os.remove(local) | |
| def convert(token: str, model_id: str) -> str: | |
| """ | |
| returns url to the PR | |
| """ | |
| api = HfApi(token=token) | |
| info = api.model_info(model_id) | |
| filenames = set(s.rfilename for s in info.siblings) | |
| if "pytorch_model.bin" in filenames: | |
| return convert_single(model_id) | |
| elif "pytorch_model.bin.index.json" in filenames: | |
| return convert_multi(model_id) | |
| raise ValueError("repo does not seem to have a pytorch_model in it") | |
| if __name__ == "__main__": | |
| DESCRIPTION = """ | |
| Simple utility tool to convert automatically some weights on the hub to `safetensors` format. | |
| It is PyTorch exclusive for now. | |
| It works by downloading the weights (PT), converting them locally, and uploading them back | |
| as a PR on the hub. | |
| """ | |
| parser = argparse.ArgumentParser(description=DESCRIPTION) | |
| parser.add_argument( | |
| "model_id", | |
| type=str, | |
| help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`", | |
| ) | |
| args = parser.parse_args() | |
| model_id = args.model_id | |
| api = HfApi() | |
| info = api.model_info(model_id) | |
| filenames = set(s.rfilename for s in info.siblings) | |
| if "pytorch_model.bin" in filenames: | |
| convert_single(model_id) | |
| else: | |
| convert_multi(model_id) | |