Spaces:
Runtime error
Runtime error
liuyang
commited on
Commit
·
8c68b8b
1
Parent(s):
d441278
Add full audio transcription functionality and update Gradio interface
Browse files
app.py
CHANGED
|
@@ -52,7 +52,6 @@ except OSError as e:
|
|
| 52 |
_whisper = None
|
| 53 |
_diarizer = None
|
| 54 |
|
| 55 |
-
|
| 56 |
# Create global diarization pipeline
|
| 57 |
try:
|
| 58 |
print("Loading diarization model...")
|
|
@@ -63,17 +62,8 @@ try:
|
|
| 63 |
_diarizer = Pipeline.from_pretrained(
|
| 64 |
"pyannote/speaker-diarization-3.1",
|
| 65 |
use_auth_token=os.getenv("HF_TOKEN"),
|
| 66 |
-
#torch_dtype=torch.float16,
|
| 67 |
).to(torch.device("cuda"))
|
| 68 |
-
|
| 69 |
-
_diarizer.model.half() # FP16
|
| 70 |
-
|
| 71 |
-
for m in _diarizer.model.modules(): # compact LSTM weights
|
| 72 |
-
if isinstance(m, torch.nn.LSTM):
|
| 73 |
-
m.flatten_parameters()
|
| 74 |
-
|
| 75 |
-
_diarizer.model = torch.compile(_diarizer.model, mode="reduce-overhead")
|
| 76 |
-
'''
|
| 77 |
print("Diarization model loaded successfully")
|
| 78 |
except Exception as e:
|
| 79 |
import traceback
|
|
@@ -116,6 +106,68 @@ class WhisperTranscriber:
|
|
| 116 |
except subprocess.CalledProcessError as e:
|
| 117 |
raise RuntimeError(f"Audio conversion failed: {e}")
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
def cut_audio_segments(self, audio_path, diarization_segments):
|
| 120 |
"""Cut audio into segments based on diarization results"""
|
| 121 |
print("Cutting audio into segments...")
|
|
@@ -309,6 +361,47 @@ class WhisperTranscriber:
|
|
| 309 |
|
| 310 |
return grouped_segments
|
| 311 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
@spaces.GPU # each call gets a GPU slice
|
| 313 |
def process_audio(self, audio_file, num_speakers=None, language=None,
|
| 314 |
translate=False, prompt=None, group_segments=True):
|
|
@@ -345,7 +438,8 @@ class WhisperTranscriber:
|
|
| 345 |
return {
|
| 346 |
"segments": transcription_results,
|
| 347 |
"language": detected_language,
|
| 348 |
-
"num_speakers": detected_num_speakers
|
|
|
|
| 349 |
}
|
| 350 |
|
| 351 |
except Exception as e:
|
|
@@ -369,11 +463,13 @@ def format_segments_for_display(result):
|
|
| 369 |
segments = result.get("segments", [])
|
| 370 |
language = result.get("language", "unknown")
|
| 371 |
num_speakers = result.get("num_speakers", 1)
|
|
|
|
| 372 |
|
| 373 |
output = f"🎯 **Detection Results:**\n"
|
| 374 |
output += f"- Language: {language}\n"
|
| 375 |
output += f"- Speakers: {num_speakers}\n"
|
| 376 |
-
output += f"- Segments: {len(segments)}\n
|
|
|
|
| 377 |
|
| 378 |
output += "📝 **Transcription:**\n\n"
|
| 379 |
|
|
@@ -389,16 +485,25 @@ def format_segments_for_display(result):
|
|
| 389 |
return output
|
| 390 |
|
| 391 |
@spaces.GPU
|
| 392 |
-
def process_audio_gradio(audio_file, num_speakers, language, translate, prompt, group_segments):
|
| 393 |
"""Gradio interface function"""
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
|
| 403 |
formatted_output = format_segments_for_display(result)
|
| 404 |
return formatted_output, result
|
|
@@ -424,16 +529,22 @@ with demo:
|
|
| 424 |
audio_input = gr.Audio(
|
| 425 |
label="🎵 Upload Audio File",
|
| 426 |
type="filepath",
|
| 427 |
-
#source="upload"
|
| 428 |
)
|
| 429 |
|
| 430 |
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
num_speakers = gr.Slider(
|
| 432 |
minimum=0,
|
| 433 |
maximum=20,
|
| 434 |
value=0,
|
| 435 |
step=1,
|
| 436 |
-
label="Number of Speakers (0 = auto-detect)"
|
|
|
|
| 437 |
)
|
| 438 |
|
| 439 |
language = gr.Dropdown(
|
|
@@ -454,7 +565,7 @@ with demo:
|
|
| 454 |
)
|
| 455 |
|
| 456 |
group_segments = gr.Checkbox(
|
| 457 |
-
label="Group segments by speaker",
|
| 458 |
value=True
|
| 459 |
)
|
| 460 |
|
|
@@ -471,6 +582,13 @@ with demo:
|
|
| 471 |
visible=False
|
| 472 |
)
|
| 473 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 474 |
# Event handlers
|
| 475 |
process_btn.click(
|
| 476 |
fn=process_audio_gradio,
|
|
@@ -480,7 +598,8 @@ with demo:
|
|
| 480 |
language,
|
| 481 |
translate,
|
| 482 |
prompt,
|
| 483 |
-
group_segments
|
|
|
|
| 484 |
],
|
| 485 |
outputs=[output_text, output_json]
|
| 486 |
)
|
|
@@ -490,7 +609,7 @@ with demo:
|
|
| 490 |
gr.Markdown("""
|
| 491 |
- **Supported formats**: MP3, WAV, M4A, FLAC, OGG, and more
|
| 492 |
- **Max duration**: Recommended under 10 minutes for optimal performance
|
| 493 |
-
- **Speaker
|
| 494 |
- **Languages**: Supports 100+ languages with auto-detection
|
| 495 |
- **Vocabulary**: Add names and technical terms in the prompt for better accuracy
|
| 496 |
""")
|
|
|
|
| 52 |
_whisper = None
|
| 53 |
_diarizer = None
|
| 54 |
|
|
|
|
| 55 |
# Create global diarization pipeline
|
| 56 |
try:
|
| 57 |
print("Loading diarization model...")
|
|
|
|
| 62 |
_diarizer = Pipeline.from_pretrained(
|
| 63 |
"pyannote/speaker-diarization-3.1",
|
| 64 |
use_auth_token=os.getenv("HF_TOKEN"),
|
|
|
|
| 65 |
).to(torch.device("cuda"))
|
| 66 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
print("Diarization model loaded successfully")
|
| 68 |
except Exception as e:
|
| 69 |
import traceback
|
|
|
|
| 106 |
except subprocess.CalledProcessError as e:
|
| 107 |
raise RuntimeError(f"Audio conversion failed: {e}")
|
| 108 |
|
| 109 |
+
@spaces.GPU # each call gets a GPU slice
|
| 110 |
+
def transcribe_full_audio(self, audio_path, language=None, translate=False, prompt=None):
|
| 111 |
+
"""Transcribe the entire audio file without speaker diarization"""
|
| 112 |
+
whisper, _ = _load_models() # models live on the GPU
|
| 113 |
+
|
| 114 |
+
print("Transcribing full audio...")
|
| 115 |
+
start_time = time.time()
|
| 116 |
+
|
| 117 |
+
# Prepare options
|
| 118 |
+
options = dict(
|
| 119 |
+
language=language,
|
| 120 |
+
beam_size=5,
|
| 121 |
+
vad_filter=True,
|
| 122 |
+
vad_parameters=VadOptions(
|
| 123 |
+
max_speech_duration_s=whisper.feature_extractor.chunk_length,
|
| 124 |
+
min_speech_duration_ms=100,
|
| 125 |
+
speech_pad_ms=100,
|
| 126 |
+
threshold=0.25,
|
| 127 |
+
neg_threshold=0.2,
|
| 128 |
+
),
|
| 129 |
+
word_timestamps=True,
|
| 130 |
+
initial_prompt=prompt,
|
| 131 |
+
language_detection_segments=1,
|
| 132 |
+
task="translate" if translate else "transcribe",
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Transcribe the entire audio
|
| 136 |
+
segments, transcript_info = whisper.transcribe(audio_path, **options)
|
| 137 |
+
segments = list(segments)
|
| 138 |
+
|
| 139 |
+
detected_language = transcript_info.language
|
| 140 |
+
|
| 141 |
+
# Process segments
|
| 142 |
+
results = []
|
| 143 |
+
for seg in segments:
|
| 144 |
+
# Create result entry with detailed format
|
| 145 |
+
words_list = []
|
| 146 |
+
if seg.words:
|
| 147 |
+
for word in seg.words:
|
| 148 |
+
words_list.append({
|
| 149 |
+
"start": float(word.start),
|
| 150 |
+
"end": float(word.end),
|
| 151 |
+
"word": word.word,
|
| 152 |
+
"probability": word.probability,
|
| 153 |
+
"speaker": "SPEAKER_00" # No speaker identification in full transcription
|
| 154 |
+
})
|
| 155 |
+
|
| 156 |
+
results.append({
|
| 157 |
+
"start": float(seg.start),
|
| 158 |
+
"end": float(seg.end),
|
| 159 |
+
"text": seg.text,
|
| 160 |
+
"speaker": "SPEAKER_00", # Single speaker assumption
|
| 161 |
+
"avg_logprob": seg.avg_logprob,
|
| 162 |
+
"words": words_list,
|
| 163 |
+
"duration": float(seg.end - seg.start)
|
| 164 |
+
})
|
| 165 |
+
|
| 166 |
+
transcription_time = time.time() - start_time
|
| 167 |
+
print(f"Full audio transcribed in {transcription_time:.2f} seconds")
|
| 168 |
+
|
| 169 |
+
return results, detected_language
|
| 170 |
+
|
| 171 |
def cut_audio_segments(self, audio_path, diarization_segments):
|
| 172 |
"""Cut audio into segments based on diarization results"""
|
| 173 |
print("Cutting audio into segments...")
|
|
|
|
| 361 |
|
| 362 |
return grouped_segments
|
| 363 |
|
| 364 |
+
@spaces.GPU # each call gets a GPU slice
|
| 365 |
+
def process_audio_full(self, audio_file, language=None, translate=False, prompt=None, group_segments=True):
|
| 366 |
+
"""Process audio with full transcription (no speaker diarization)"""
|
| 367 |
+
if audio_file is None:
|
| 368 |
+
return {"error": "No audio file provided"}
|
| 369 |
+
|
| 370 |
+
converted_audio_path = None
|
| 371 |
+
try:
|
| 372 |
+
print("Starting full transcription pipeline...")
|
| 373 |
+
|
| 374 |
+
# Step 1: Convert audio format
|
| 375 |
+
print("Converting audio format...")
|
| 376 |
+
converted_audio_path = self.convert_audio_format(audio_file)
|
| 377 |
+
|
| 378 |
+
# Step 2: Transcribe the entire audio
|
| 379 |
+
transcription_results, detected_language = self.transcribe_full_audio(
|
| 380 |
+
converted_audio_path, language, translate, prompt
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
# Step 3: Group segments if requested (based on time gaps and sentence endings)
|
| 384 |
+
if group_segments:
|
| 385 |
+
transcription_results = self.group_segments_by_speaker(transcription_results)
|
| 386 |
+
|
| 387 |
+
# Step 4: Return results
|
| 388 |
+
return {
|
| 389 |
+
"segments": transcription_results,
|
| 390 |
+
"language": detected_language,
|
| 391 |
+
"num_speakers": 1, # Single speaker assumption
|
| 392 |
+
"transcription_method": "full_audio"
|
| 393 |
+
}
|
| 394 |
+
|
| 395 |
+
except Exception as e:
|
| 396 |
+
import traceback
|
| 397 |
+
traceback.print_exc()
|
| 398 |
+
return {"error": f"Processing failed: {str(e)}"}
|
| 399 |
+
finally:
|
| 400 |
+
# Clean up converted audio file
|
| 401 |
+
if converted_audio_path and os.path.exists(converted_audio_path):
|
| 402 |
+
os.unlink(converted_audio_path)
|
| 403 |
+
print("Cleaned up converted audio file")
|
| 404 |
+
|
| 405 |
@spaces.GPU # each call gets a GPU slice
|
| 406 |
def process_audio(self, audio_file, num_speakers=None, language=None,
|
| 407 |
translate=False, prompt=None, group_segments=True):
|
|
|
|
| 438 |
return {
|
| 439 |
"segments": transcription_results,
|
| 440 |
"language": detected_language,
|
| 441 |
+
"num_speakers": detected_num_speakers,
|
| 442 |
+
"transcription_method": "diarized_segments"
|
| 443 |
}
|
| 444 |
|
| 445 |
except Exception as e:
|
|
|
|
| 463 |
segments = result.get("segments", [])
|
| 464 |
language = result.get("language", "unknown")
|
| 465 |
num_speakers = result.get("num_speakers", 1)
|
| 466 |
+
method = result.get("transcription_method", "unknown")
|
| 467 |
|
| 468 |
output = f"🎯 **Detection Results:**\n"
|
| 469 |
output += f"- Language: {language}\n"
|
| 470 |
output += f"- Speakers: {num_speakers}\n"
|
| 471 |
+
output += f"- Segments: {len(segments)}\n"
|
| 472 |
+
output += f"- Method: {method}\n\n"
|
| 473 |
|
| 474 |
output += "📝 **Transcription:**\n\n"
|
| 475 |
|
|
|
|
| 485 |
return output
|
| 486 |
|
| 487 |
@spaces.GPU
|
| 488 |
+
def process_audio_gradio(audio_file, num_speakers, language, translate, prompt, group_segments, use_diarization):
|
| 489 |
"""Gradio interface function"""
|
| 490 |
+
if use_diarization:
|
| 491 |
+
result = transcriber.process_audio(
|
| 492 |
+
audio_file=audio_file,
|
| 493 |
+
num_speakers=num_speakers if num_speakers > 0 else None,
|
| 494 |
+
language=language if language != "auto" else None,
|
| 495 |
+
translate=translate,
|
| 496 |
+
prompt=prompt if prompt and prompt.strip() else None,
|
| 497 |
+
group_segments=group_segments
|
| 498 |
+
)
|
| 499 |
+
else:
|
| 500 |
+
result = transcriber.process_audio_full(
|
| 501 |
+
audio_file=audio_file,
|
| 502 |
+
language=language if language != "auto" else None,
|
| 503 |
+
translate=translate,
|
| 504 |
+
prompt=prompt if prompt and prompt.strip() else None,
|
| 505 |
+
group_segments=group_segments
|
| 506 |
+
)
|
| 507 |
|
| 508 |
formatted_output = format_segments_for_display(result)
|
| 509 |
return formatted_output, result
|
|
|
|
| 529 |
audio_input = gr.Audio(
|
| 530 |
label="🎵 Upload Audio File",
|
| 531 |
type="filepath",
|
|
|
|
| 532 |
)
|
| 533 |
|
| 534 |
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
| 535 |
+
use_diarization = gr.Checkbox(
|
| 536 |
+
label="Enable Speaker Diarization",
|
| 537 |
+
value=True,
|
| 538 |
+
info="Uncheck for faster transcription without speaker identification"
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
num_speakers = gr.Slider(
|
| 542 |
minimum=0,
|
| 543 |
maximum=20,
|
| 544 |
value=0,
|
| 545 |
step=1,
|
| 546 |
+
label="Number of Speakers (0 = auto-detect)",
|
| 547 |
+
visible=True
|
| 548 |
)
|
| 549 |
|
| 550 |
language = gr.Dropdown(
|
|
|
|
| 565 |
)
|
| 566 |
|
| 567 |
group_segments = gr.Checkbox(
|
| 568 |
+
label="Group segments by speaker/time",
|
| 569 |
value=True
|
| 570 |
)
|
| 571 |
|
|
|
|
| 582 |
visible=False
|
| 583 |
)
|
| 584 |
|
| 585 |
+
# Update visibility of num_speakers based on diarization toggle
|
| 586 |
+
use_diarization.change(
|
| 587 |
+
fn=lambda x: gr.update(visible=x),
|
| 588 |
+
inputs=[use_diarization],
|
| 589 |
+
outputs=[num_speakers]
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
# Event handlers
|
| 593 |
process_btn.click(
|
| 594 |
fn=process_audio_gradio,
|
|
|
|
| 598 |
language,
|
| 599 |
translate,
|
| 600 |
prompt,
|
| 601 |
+
group_segments,
|
| 602 |
+
use_diarization
|
| 603 |
],
|
| 604 |
outputs=[output_text, output_json]
|
| 605 |
)
|
|
|
|
| 609 |
gr.Markdown("""
|
| 610 |
- **Supported formats**: MP3, WAV, M4A, FLAC, OGG, and more
|
| 611 |
- **Max duration**: Recommended under 10 minutes for optimal performance
|
| 612 |
+
- **Speaker diarization**: Enable for speaker identification (slower), disable for faster transcription
|
| 613 |
- **Languages**: Supports 100+ languages with auto-detection
|
| 614 |
- **Vocabulary**: Add names and technical terms in the prompt for better accuracy
|
| 615 |
""")
|