Spaces:
Runtime error
Runtime error
liuyang
Refactor model management and transcription process: Introduced a model registry for easier management of Whisper models, added functionality to download models on startup, and streamlined the audio processing pipeline to support both chunk and segment transcriptions with improved error handling and cleanup.
e3d9c9e
| import spaces | |
| import boto3 | |
| from botocore.exceptions import NoCredentialsError, ClientError | |
| from botocore.client import Config | |
| import os, pathlib | |
| CACHE_ROOT = "/home/user/app/cache" # any folder you own | |
| os.environ.update( | |
| TORCH_HOME = f"{CACHE_ROOT}/torch", | |
| XDG_CACHE_HOME = f"{CACHE_ROOT}/xdg", # torch fallback | |
| PYANNOTE_CACHE = f"{CACHE_ROOT}/pyannote", | |
| HF_HOME = f"{CACHE_ROOT}/huggingface", | |
| TRANSFORMERS_CACHE= f"{CACHE_ROOT}/transformers", | |
| MPLCONFIGDIR = f"{CACHE_ROOT}/mpl", | |
| ) | |
| INITIAL_PROMPT = ''' | |
| Use normal punctuation; end sentences properly. | |
| ''' | |
| # make sure the directories exist | |
| for path in os.environ.values(): | |
| pathlib.Path(path).mkdir(parents=True, exist_ok=True) | |
| import gradio as gr | |
| import torch | |
| import torchaudio | |
| import numpy as np | |
| import pandas as pd | |
| import time | |
| import datetime | |
| import re | |
| import subprocess | |
| import os | |
| import tempfile | |
| import spaces | |
| from faster_whisper import WhisperModel, BatchedInferencePipeline | |
| from faster_whisper.vad import VadOptions | |
| import requests | |
| import base64 | |
| from pyannote.audio import Pipeline, Inference, Model | |
| from pyannote.core import Segment | |
| import os, sys, importlib.util, pathlib, ctypes, tempfile, wave, math | |
| import json | |
| import webrtcvad | |
| spec = importlib.util.find_spec("nvidia.cudnn") | |
| if spec is None: | |
| sys.exit("β nvidia-cudnn-cu12 wheel not found. Run: pip install nvidia-cudnn-cu12") | |
| cudnn_dir = pathlib.Path(spec.origin).parent / "lib" | |
| cnn_so = cudnn_dir / "libcudnn_cnn.so.9" | |
| try: | |
| ctypes.CDLL(cnn_so, mode=ctypes.RTLD_GLOBAL) | |
| print(f"β Pre-loaded {cnn_so}") | |
| except OSError as e: | |
| sys.exit(f"β Could not load {cnn_so} : {e}") | |
| S3_ENDPOINT = os.getenv("S3_ENDPOINT") | |
| S3_ACCESS_KEY = os.getenv("S3_ACCESS_KEY") | |
| S3_SECRET_KEY = os.getenv("S3_SECRET_KEY") | |
| # Function to upload file to Cloudflare R2 | |
| def upload_data_to_r2(data, bucket_name, object_name, content_type='application/octet-stream'): | |
| """ | |
| Upload data directly to a Cloudflare R2 bucket. | |
| :param data: Data to upload (bytes or string). | |
| :param bucket_name: Name of the R2 bucket. | |
| :param object_name: Name of the object to save in the bucket. | |
| :param content_type: MIME type of the data. | |
| :return: True if data was uploaded, else False. | |
| """ | |
| try: | |
| # Convert string to bytes if necessary | |
| if isinstance(data, str): | |
| data = data.encode('utf-8') | |
| # Initialize a session using Cloudflare R2 credentials | |
| session = boto3.session.Session() | |
| s3 = session.client('s3', | |
| endpoint_url=f'https://{S3_ENDPOINT}', | |
| aws_access_key_id=S3_ACCESS_KEY, | |
| aws_secret_access_key=S3_SECRET_KEY, | |
| config = Config(s3={"addressing_style": "virtual", 'payload_signing_enabled': False}, signature_version='v4', | |
| request_checksum_calculation='when_required', | |
| response_checksum_validation='when_required',), | |
| ) | |
| # Upload the data to R2 bucket | |
| s3.put_object( | |
| Bucket=bucket_name, | |
| Key=object_name, | |
| Body=data, | |
| ContentType=content_type, | |
| ContentLength=len(data), # make length explicit to avoid streaming | |
| ) | |
| print(f"Data uploaded to R2 bucket '{bucket_name}' as '{object_name}'") | |
| return True | |
| except NoCredentialsError: | |
| print("Credentials not available") | |
| return False | |
| except ClientError as e: | |
| print(f"Failed to upload data to R2 bucket: {e}") | |
| return False | |
| except Exception as e: | |
| print(f"An unexpected error occurred: {e}") | |
| return False | |
| from huggingface_hub import snapshot_download | |
| # ----------------------------------------------------------------------------- | |
| # Model Management | |
| # ----------------------------------------------------------------------------- | |
| MODELS = { | |
| "large-v3-turbo": { | |
| "repo_id": "deepdml/faster-whisper-large-v3-turbo-ct2", | |
| "local_dir": f"{CACHE_ROOT}/whisper_turbo_v3" | |
| }, | |
| "large-v3": { | |
| "repo_id": "Systran/faster-whisper-large-v3", | |
| "local_dir": f"{CACHE_ROOT}/whisper_large_v3" | |
| }, | |
| "large-v2": { | |
| "repo_id": "Systran/faster-whisper-large-v2", | |
| "local_dir": f"{CACHE_ROOT}/whisper_large_v2" | |
| }, | |
| } | |
| DEFAULT_MODEL = "large-v3-turbo" | |
| def _download_model(model_name: str): | |
| """Downloads a model from the hub if not already present.""" | |
| if model_name not in MODELS: | |
| raise ValueError(f"Model '{model_name}' not found in MODELS registry.") | |
| model_info = MODELS[model_name] | |
| if not os.path.exists(model_info["local_dir"]): | |
| print(f"Downloading model '{model_name}' from {model_info['repo_id']}...") | |
| snapshot_download( | |
| repo_id=model_info["repo_id"], | |
| local_dir=model_info["local_dir"], | |
| local_dir_use_symlinks=True, | |
| resume_download=True | |
| ) | |
| return model_info["local_dir"] | |
| # Download the default model on startup | |
| _download_model(DEFAULT_MODEL) | |
| # ----------------------------------------------------------------------------- | |
| # Audio preprocess helper (from input_and_preprocess rule) | |
| # ----------------------------------------------------------------------------- | |
| TRIM_THRESHOLD_MS = 10_000 # 10 seconds | |
| DEFAULT_PAD_MS = 250 # safety context around detected speech | |
| FRAME_MS = 30 # VAD frame | |
| HANG_MS = 240 # hangover (keep speech "on" after silence) | |
| VAD_LEVEL = 2 # 0-3 | |
| def _decode_chunk_to_pcm(task: dict) -> bytes: | |
| """Use ffmpeg to decode the chunk to s16le mono @ 16k PCM bytes.""" | |
| src = task["source_uri"] | |
| ing = task["ingest_recipe"] | |
| seek = task["ffmpeg_seek"] | |
| cmd = [ | |
| "ffmpeg", "-nostdin", "-hide_banner", "-v", "error", | |
| "-ss", f"{max(0.0, float(seek['pre_ss_sec'])):.3f}", | |
| "-i", src, | |
| "-map", "0:a:0", | |
| "-ss", f"{float(seek['post_ss_sec']):.2f}", | |
| "-t", f"{float(seek['t_sec']):.3f}", | |
| ] | |
| # Optional L/R extraction | |
| if ing.get("channel_extract_filter"): | |
| cmd += ["-af", ing["channel_extract_filter"]] | |
| # Force mono 16k s16le to stdout | |
| cmd += ["-ar", "16000", "-ac", "1", "-c:a", "pcm_s16le", "-f", "s16le", "pipe:1"] | |
| p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
| pcm, err = p.communicate() | |
| if p.returncode != 0: | |
| raise RuntimeError(f"ffmpeg failed: {err.decode('utf-8', 'ignore')}") | |
| return pcm | |
| def _find_head_tail_speech_ms( | |
| pcm: bytes, | |
| sr: int = 16000, | |
| frame_ms: int = FRAME_MS, | |
| vad_level: int = VAD_LEVEL, | |
| hang_ms: int = HANG_MS, | |
| ): | |
| """Return (first_ms, last_ms) speech boundaries using webrtcvad with hangover.""" | |
| if not pcm: | |
| return None, None | |
| vad = webrtcvad.Vad(int(vad_level)) | |
| bpf = 2 # bytes per sample (s16) | |
| samples_per_ms = sr // 1000 # 16 | |
| bytes_per_frame = samples_per_ms * bpf * frame_ms | |
| n_frames = len(pcm) // bytes_per_frame | |
| if n_frames == 0: | |
| return None, None | |
| first_ms, last_ms = None, None | |
| t_ms = 0 | |
| in_speech = False | |
| silence_run = 0 | |
| view = memoryview(pcm)[: n_frames * bytes_per_frame] | |
| for i in range(n_frames): | |
| frame = view[i * bytes_per_frame : (i + 1) * bytes_per_frame] | |
| if vad.is_speech(frame, sr): | |
| if first_ms is None: | |
| first_ms = t_ms | |
| in_speech = True | |
| silence_run = 0 | |
| else: | |
| if in_speech: | |
| silence_run += frame_ms | |
| if silence_run >= hang_ms: | |
| last_ms = t_ms - (silence_run - hang_ms) | |
| in_speech = False | |
| silence_run = 0 | |
| t_ms += frame_ms | |
| if in_speech: | |
| last_ms = t_ms | |
| return first_ms, last_ms | |
| def _write_wav(path: str, pcm: bytes, sr: int = 16000): | |
| os.makedirs(os.path.dirname(path), exist_ok=True) | |
| with wave.open(path, "wb") as w: | |
| w.setnchannels(1) | |
| w.setsampwidth(2) # s16 | |
| w.setframerate(sr) | |
| w.writeframes(pcm) | |
| def prepare_and_save_audio_for_model(task: dict, out_dir: str) -> dict: | |
| """ | |
| 1) Decode chunk(s) to mono 16k PCM. | |
| 2) Run VAD to locate head/tail silence. | |
| 3) Trim only if head or tail >= 10s. | |
| 4) Save the (possibly trimmed) WAV to local file(s). | |
| 5) Return timing metadata, including 'trimmed_start_ms' to preserve global timestamps. | |
| Args: | |
| task: dict containing either: | |
| - "chunk": single chunk dict, or | |
| - "chunk": list of chunk dicts | |
| out_dir: output directory for WAV files | |
| Returns: | |
| A wrapper dict with general fields (e.g., job_id, channel, sr, filekey) | |
| and a "chunks" array containing metadata dict(s) for each processed chunk. | |
| This structure is returned for both single and multiple chunk inputs. | |
| """ | |
| chunks = task["chunk"] | |
| result = { | |
| "job_id": task.get("job_id", "job"), | |
| "channel": task["channel"], | |
| "sr": 16000, | |
| "options": task.get("options", None), | |
| "filekey": task.get("filekey", None), | |
| } | |
| # Handle both single chunk and multiple chunks | |
| if isinstance(chunks, list): | |
| # Process multiple chunks | |
| results = [] | |
| for chunk in chunks: | |
| # Create a task for each chunk | |
| single_chunk_task = task.copy() | |
| single_chunk_task["chunk"] = chunk | |
| result = _process_single_chunk(single_chunk_task, out_dir) | |
| results.append(result) | |
| # Compose wrapper dict with general fields applicable to all chunks | |
| result["chunks"] = results | |
| else: | |
| # Process single chunk and wrap in the standard response structure | |
| result = _process_single_chunk(task, out_dir) | |
| result["chunk"] = result | |
| return result | |
| def _process_single_chunk(task: dict, out_dir: str) -> dict: | |
| """ | |
| Process a single chunk - extracted from the original prepare_and_save_audio_for_model logic. | |
| 1) Decode chunk to mono 16k PCM. | |
| 2) Run VAD to locate head/tail silence. | |
| 3) Trim only if head or tail >= 10s. | |
| 4) Save the (possibly trimmed) WAV to local file. | |
| 5) Return timing metadata, including 'trimmed_start_ms' to preserve global timestamps. | |
| """ | |
| # 0) Names & constants | |
| sr = 16000 | |
| bpf = 2 | |
| samples_per_ms = sr // 1000 | |
| def bytes_from_ms(ms: int) -> int: | |
| return int(ms * samples_per_ms) * bpf | |
| ch = task["channel"] | |
| ck = task["chunk"] | |
| job = task.get("job_id", "job") | |
| idx = str(ck["idx"]) | |
| # 1) Decode chunk | |
| pcm = _decode_chunk_to_pcm(task) | |
| planned_dur_ms = int(ck["dur_ms"]) | |
| # 2) VAD head/tail detection | |
| first_ms, last_ms = _find_head_tail_speech_ms(pcm, sr=sr) | |
| head_sil_ms = int(first_ms) if first_ms is not None else planned_dur_ms | |
| tail_sil_ms = int(planned_dur_ms - last_ms) if last_ms is not None else planned_dur_ms | |
| # 3) Decide trimming (only if head or tail >= 10s) | |
| trim_applied = False | |
| eff_start_ms = 0 | |
| eff_end_ms = planned_dur_ms | |
| trimmed_pcm = pcm | |
| if (head_sil_ms >= TRIM_THRESHOLD_MS) or (tail_sil_ms >= TRIM_THRESHOLD_MS): | |
| # If no speech found at all, mark skip | |
| if first_ms is None or last_ms is None or last_ms <= first_ms: | |
| out_wav_path = os.path.join(out_dir, f"{job}_{ch}_{idx}_nospeech.wav") | |
| _write_wav(out_wav_path, b"", sr) | |
| return { | |
| "out_wav_path": out_wav_path, | |
| "sr": sr, | |
| "trim_applied": False, | |
| "trimmed_start_ms": 0, | |
| "head_silence_ms": head_sil_ms, | |
| "tail_silence_ms": tail_sil_ms, | |
| "effective_start_ms": 0, | |
| "effective_dur_ms": 0, | |
| "abs_start_ms": ck["global_offset_ms"], | |
| "chunk_idx": idx, | |
| "channel": ch, | |
| "skip": True, | |
| } | |
| # Apply padding & slice | |
| start_ms = max(0, int(first_ms) - DEFAULT_PAD_MS) | |
| end_ms = min(planned_dur_ms, int(last_ms) + DEFAULT_PAD_MS) | |
| if end_ms > start_ms: | |
| eff_start_ms = start_ms | |
| eff_end_ms = end_ms | |
| trimmed_pcm = pcm[bytes_from_ms(start_ms) : bytes_from_ms(end_ms)] | |
| trim_applied = True | |
| # 4) Write WAV to local file (trimmed or original) | |
| tag = "trim" if trim_applied else "full" | |
| out_wav_path = os.path.join(out_dir, f"{job}_{ch}_{idx}_{tag}.wav") | |
| _write_wav(out_wav_path, trimmed_pcm, sr) | |
| # 5) Return metadata | |
| return { | |
| "out_wav_path": out_wav_path, | |
| "sr": sr, | |
| "trim_applied": trim_applied, | |
| "trimmed_start_ms": eff_start_ms if trim_applied else 0, | |
| "head_silence_ms": head_sil_ms, | |
| "tail_silence_ms": tail_sil_ms, | |
| "effective_start_ms": eff_start_ms, | |
| "effective_dur_ms": eff_end_ms - eff_start_ms, | |
| "abs_start_ms": int(ck["global_offset_ms"]) + eff_start_ms, | |
| "chunk_idx": idx, | |
| "channel": ch, | |
| "job_id": job, | |
| "skip": False if (trim_applied or len(pcm) > 0) else True, | |
| } | |
| # Download once; later runs are instant | |
| # snapshot_download( | |
| # repo_id=MODEL_REPO, | |
| # local_dir=LOCAL_DIR, | |
| # local_dir_use_symlinks=True, # saves disk space | |
| # resume_download=True | |
| # ) | |
| # model_cache_path = LOCAL_DIR # <ββ this is what we pass to WhisperModel | |
| # Lazy global holder ---------------------------------------------------------- | |
| _whisper_models = {} | |
| _batched_whisper_models = {} | |
| _diarizer = None | |
| _embedder = None | |
| # Create global diarization pipeline | |
| try: | |
| print("Loading diarization model...") | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.allow_tf32 = True | |
| torch.set_float32_matmul_precision('high') | |
| _diarizer = Pipeline.from_pretrained( | |
| "pyannote/speaker-diarization-3.1", | |
| use_auth_token=os.getenv("HF_TOKEN"), | |
| ).to(torch.device("cuda")) | |
| print("Diarization model loaded successfully") | |
| except Exception as e: | |
| import traceback | |
| traceback.print_exc() | |
| print(f"Could not load diarization model: {e}") | |
| _diarizer = None | |
| # GPU is guaranteed to exist *inside* this function | |
| def _load_models(model_name: str = DEFAULT_MODEL): | |
| global _whisper_models, _batched_whisper_models, _diarizer | |
| if model_name not in _whisper_models: | |
| print(f"Loading Whisper model '{model_name}'...") | |
| model_cache_path = _download_model(model_name) | |
| model = WhisperModel( | |
| model_cache_path, | |
| device="cuda", | |
| compute_type="float16", | |
| ) | |
| # Create batched inference pipeline for improved performance | |
| batched_model = BatchedInferencePipeline(model=model) | |
| _whisper_models[model_name] = model | |
| _batched_whisper_models[model_name] = batched_model | |
| print(f"Whisper model '{model_name}' and batched pipeline loaded successfully") | |
| whisper = _whisper_models[model_name] | |
| batched_whisper = _batched_whisper_models[model_name] | |
| return whisper, batched_whisper, _diarizer | |
| # ----------------------------------------------------------------------------- | |
| class WhisperTranscriber: | |
| def __init__(self): | |
| # do **not** create the models here! | |
| pass | |
| def preprocess_from_task_json(self, task_json: str) -> dict: | |
| """Parse task JSON and run prepare_and_save_audio_for_model, returning metadata.""" | |
| try: | |
| task = json.loads(task_json) | |
| except Exception as e: | |
| raise RuntimeError(f"Invalid JSON: {e}") | |
| out_dir = os.path.join(CACHE_ROOT, "preprocessed") | |
| os.makedirs(out_dir, exist_ok=True) | |
| meta = prepare_and_save_audio_for_model(task, out_dir) | |
| return meta | |
| # each call gets a GPU slice | |
| def transcribe_full_audio(self, audio_path, language=None, translate=False, prompt=None, batch_size=16, base_offset_s: float = 0.0, clip_timestamps=None, model_name: str = DEFAULT_MODEL, transcribe_options: dict = None): | |
| """Transcribe the entire audio file without speaker diarization using batched inference""" | |
| whisper, batched_whisper, _ = _load_models(model_name) # models live on the GPU | |
| print(f"Transcribing full audio with '{model_name}' and batch size {batch_size}...") | |
| start_time = time.time() | |
| # Prepare options for batched inference | |
| options = dict( | |
| language=language, | |
| beam_size=5, | |
| word_timestamps=True, | |
| initial_prompt=prompt, | |
| condition_on_previous_text=False, # avoid runaway context | |
| language_detection_segments=1, | |
| task="translate" if translate else "transcribe", | |
| ) | |
| if clip_timestamps: | |
| options["vad_filter"] = False | |
| options["clip_timestamps"] = clip_timestamps | |
| else: | |
| vad_options = transcribe_options.get("vad_parameters", None) | |
| options["vad_filter"] = True # VAD is enabled by default for batched transcription | |
| options["vad_parameters"] = VadOptions(**vad_options) if vad_options else VadOptions( | |
| max_speech_duration_s=whisper.feature_extractor.chunk_length, | |
| min_speech_duration_ms=180, # ignore ultra-short blips | |
| min_silence_duration_ms=120, # split on short Mandarin pauses (if supported) | |
| speech_pad_ms=120, | |
| threshold=0.35, | |
| neg_threshold=0.2, | |
| ) | |
| if batch_size > 1: | |
| # Use batched inference for better performance | |
| segments, transcript_info = batched_whisper.transcribe( | |
| audio_path, | |
| batch_size=batch_size, | |
| **options | |
| ) | |
| else: | |
| segments, transcript_info = whisper.transcribe( | |
| audio_path, | |
| **options | |
| ) | |
| segments = list(segments) | |
| detected_language = transcript_info.language | |
| print("Detected language: ", detected_language, "segments: ", len(segments)) | |
| # Process segments | |
| results = [] | |
| for seg in segments: | |
| # Create result entry with detailed format | |
| words_list = [] | |
| if seg.words: | |
| for word in seg.words: | |
| words_list.append({ | |
| "start": float(word.start) + float(base_offset_s), | |
| "end": float(word.end) + float(base_offset_s), | |
| "word": word.word, | |
| "probability": word.probability, | |
| "speaker": "SPEAKER_00" # No speaker identification in full transcription | |
| }) | |
| results.append({ | |
| "start": float(seg.start) + float(base_offset_s), | |
| "end": float(seg.end) + float(base_offset_s), | |
| "text": seg.text, | |
| "speaker": "SPEAKER_00", # Single speaker assumption | |
| "avg_logprob": seg.avg_logprob, | |
| "words": words_list, | |
| "duration": float(seg.end - seg.start) | |
| }) | |
| transcription_time = time.time() - start_time | |
| print(f"Full audio transcribed in {transcription_time:.2f} seconds using batch size {batch_size}") | |
| print(results) | |
| return results, detected_language | |
| # Removed audio cutting; transcription is done once on the full (preprocessed) audio | |
| # each call gets a GPU slice | |
| def perform_diarization(self, audio_path, num_speakers=None, base_offset_s: float = 0.0): | |
| """Perform speaker diarization; return segments with global timestamps and per-speaker embeddings.""" | |
| _, _, diarizer = _load_models() # models live on the GPU | |
| if diarizer is None: | |
| print("Diarization model not available, creating single speaker segment") | |
| # Load audio to get duration | |
| waveform, sample_rate = torchaudio.load(audio_path) | |
| duration = waveform.shape[1] / sample_rate | |
| # Try to compute a single-speaker embedding | |
| speaker_embeddings = {} | |
| try: | |
| embedder = self._load_embedder() | |
| # Provide waveform as (channel, time) and pad if too short | |
| min_embed_duration_sec = 3.0 | |
| min_samples = int(min_embed_duration_sec * sample_rate) | |
| if waveform.shape[1] < min_samples: | |
| pad_len = min_samples - waveform.shape[1] | |
| pad = torch.zeros(waveform.shape[0], pad_len, dtype=waveform.dtype, device=waveform.device) | |
| waveform = torch.cat([waveform, pad], dim=1) | |
| emb = embedder({"waveform": waveform, "sample_rate": sample_rate}) | |
| speaker_embeddings["SPEAKER_00"] = emb.squeeze().tolist() | |
| except Exception: | |
| pass | |
| return [{ | |
| "start": 0.0 + float(base_offset_s), | |
| "end": duration + float(base_offset_s), | |
| "speaker": "SPEAKER_00" | |
| }], 1, speaker_embeddings | |
| print("Starting diarization...") | |
| start_time = time.time() | |
| # Load audio for diarization | |
| waveform, sample_rate = torchaudio.load(audio_path) | |
| # Perform diarization | |
| diarization = diarizer( | |
| {"waveform": waveform, "sample_rate": sample_rate}, | |
| num_speakers=num_speakers, | |
| ) | |
| # Convert to list format | |
| diarize_segments = [] | |
| diarization_list = list(diarization.itertracks(yield_label=True)) | |
| print(diarization_list) | |
| for turn, _, speaker in diarization_list: | |
| diarize_segments.append({ | |
| "start": float(turn.start) + float(base_offset_s), | |
| "end": float(turn.end) + float(base_offset_s), | |
| "speaker": speaker | |
| }) | |
| unique_speakers = {speaker for segment in diarize_segments for speaker in [segment["speaker"]]} | |
| detected_num_speakers = len(unique_speakers) | |
| # Compute per-speaker embeddings by averaging segment embeddings | |
| speaker_embeddings = {} | |
| try: | |
| embedder = self._load_embedder() | |
| spk_to_embs = {spk: [] for spk in unique_speakers} | |
| # Primary path: slice in-memory waveform and zero-pad short segments | |
| min_embed_duration_sec = 3.0 | |
| audio_duration_sec = float(waveform.shape[1]) / float(sample_rate) | |
| for turn, _, speaker in diarization_list: | |
| seg_start = float(turn.start) | |
| seg_end = float(turn.end) | |
| if seg_end <= seg_start: | |
| continue | |
| start_sample = max(0, int(seg_start * sample_rate)) | |
| end_sample = min(waveform.shape[1], int(seg_end * sample_rate)) | |
| if end_sample <= start_sample: | |
| continue | |
| seg_wav = waveform[:, start_sample:end_sample].contiguous() | |
| min_samples = int(min_embed_duration_sec * sample_rate) | |
| if seg_wav.shape[1] < min_samples: | |
| pad_len = min_samples - seg_wav.shape[1] | |
| pad = torch.zeros(seg_wav.shape[0], pad_len, dtype=seg_wav.dtype, device=seg_wav.device) | |
| seg_wav = torch.cat([seg_wav, pad], dim=1) | |
| try: | |
| emb = embedder({"waveform": seg_wav, "sample_rate": sample_rate}) | |
| except Exception: | |
| # Fallback: use crop on the file with expanded window to minimum duration | |
| desired_end = min(seg_start + min_embed_duration_sec, audio_duration_sec) | |
| desired_start = max(0.0, desired_end - min_embed_duration_sec) | |
| emb = embedder.crop(audio_path, Segment(desired_start, desired_end)) | |
| spk_to_embs[speaker].append(emb.squeeze()) | |
| # average | |
| for spk, embs in spk_to_embs.items(): | |
| if len(embs) == 0: | |
| continue | |
| # stack and mean | |
| try: | |
| import torch as _torch | |
| embs_tensor = _torch.stack([_torch.as_tensor(e) for e in embs], dim=0) | |
| centroid = embs_tensor.mean(dim=0) | |
| # L2 normalize | |
| centroid = centroid / (centroid.norm(p=2) + 1e-12) | |
| speaker_embeddings[spk] = centroid.cpu().tolist() | |
| except Exception: | |
| # fallback to first embedding | |
| speaker_embeddings[spk] = embs[0].cpu().tolist() | |
| #print(speaker_embeddings[spk]) | |
| except Exception as e: | |
| print(f"Error during embedding calculation: {e}") | |
| print(f"Diarization segments: {diarize_segments}") | |
| pass | |
| diarization_time = time.time() - start_time | |
| print(f"Diarization completed in {diarization_time:.2f} seconds") | |
| return diarize_segments, detected_num_speakers, speaker_embeddings | |
| def _load_embedder(self): | |
| """Lazy-load speaker embedding inference model on GPU.""" | |
| global _embedder | |
| if _embedder is None: | |
| # window="whole" to compute one embedding per provided chunk | |
| token = os.getenv("HF_TOKEN") | |
| model = Model.from_pretrained("pyannote/embedding", use_auth_token=token) | |
| _embedder = Inference(model, window="whole", device=torch.device("cuda")) | |
| return _embedder | |
| def assign_speakers_to_transcription(self, transcription_results, diarization_segments): | |
| """Assign speakers to words and segments based on overlap with diarization segments. | |
| Also detects diarization segments that do not overlap any transcription segment and | |
| returns them so they can be re-processed (e.g., re-transcribed) later. | |
| """ | |
| if not diarization_segments: | |
| return transcription_results, [] | |
| # Helper: find the diarization speaker active at time t, or closest | |
| def speaker_at(t: float): | |
| for dseg in diarization_segments: | |
| if float(dseg["start"]) <= t < float(dseg["end"]): | |
| return dseg["speaker"] | |
| # if not inside, return closest segment's speaker | |
| closest = None | |
| best_dist = float("inf") | |
| for dseg in diarization_segments: | |
| if t < float(dseg["start"]): | |
| d = float(dseg["start"]) - t | |
| elif t > float(dseg["end"]): | |
| d = t - float(dseg["end"]) | |
| else: | |
| d = 0.0 | |
| if d < best_dist: | |
| best_dist = d | |
| closest = dseg | |
| return closest["speaker"] if closest else "SPEAKER_00" | |
| # Helper: overlap length between two intervals | |
| def interval_overlap(a_start: float, a_end: float, b_start: float, b_end: float) -> float: | |
| return max(0.0, min(a_end, b_end) - max(a_start, b_start)) | |
| # Helper: choose speaker for an interval by maximum overlap with diarization | |
| def best_speaker_for_interval(start_t: float, end_t: float) -> str: | |
| best_spk = None | |
| best_ov = -1.0 | |
| for dseg in diarization_segments: | |
| ov = interval_overlap(float(start_t), float(end_t), float(dseg["start"]), float(dseg["end"])) | |
| if ov > best_ov: | |
| best_ov = ov | |
| best_spk = dseg["speaker"] | |
| if best_ov > 0.0 and best_spk is not None: | |
| return best_spk | |
| # fallback to nearest by midpoint | |
| mid = (float(start_t) + float(end_t)) / 2.0 | |
| return speaker_at(mid) | |
| # First pass: assign speakers to words and apply smoothing | |
| for seg in transcription_results: | |
| if seg.get("words"): | |
| words = seg["words"] | |
| # 1) Initial assignment by overlap | |
| for w in words: | |
| w_start = float(w["start"]) | |
| w_end = float(w["end"]) | |
| w["speaker"] = best_speaker_for_interval(w_start, w_end) | |
| # 2) Small median filter (window=3) to fix isolated outliers | |
| if len(words) >= 3: | |
| smoothed = [words[i]["speaker"] for i in range(len(words))] | |
| for i in range(1, len(words) - 1): | |
| prev_spk = words[i - 1]["speaker"] | |
| curr_spk = words[i]["speaker"] | |
| next_spk = words[i + 1]["speaker"] | |
| if prev_spk == next_spk and curr_spk != prev_spk: | |
| smoothed[i] = prev_spk | |
| for i in range(len(words)): | |
| words[i]["speaker"] = smoothed[i] | |
| else: | |
| # No word timings: choose by overlap with diarization over the whole segment | |
| seg["speaker"] = best_speaker_for_interval(float(seg["start"]), float(seg["end"])) | |
| # Second pass: split segments that have speaker changes within them | |
| split_segments = [] | |
| for seg in transcription_results: | |
| words = seg.get("words", []) | |
| if not words or len(words) <= 1: | |
| # No words or single word - can't split, assign speaker directly | |
| if not words: | |
| seg["speaker"] = best_speaker_for_interval(float(seg["start"]), float(seg["end"])) | |
| else: | |
| seg["speaker"] = words[0].get("speaker", "SPEAKER_00") | |
| split_segments.append(seg) | |
| continue | |
| # Find speaker transition points with minimum duration filter | |
| current_speaker = words[0].get("speaker", "SPEAKER_00") | |
| split_points = [0] # Always start with first word | |
| min_segment_duration = 0.5 # Minimum 0.5 seconds per segment | |
| for i in range(1, len(words)): | |
| word_speaker = words[i].get("speaker", "SPEAKER_00") | |
| if word_speaker != current_speaker: | |
| # Check if this would create a segment that's too short | |
| if split_points: | |
| last_split = split_points[-1] | |
| segment_start_time = float(words[last_split]["start"]) | |
| current_word_time = float(words[i-1]["end"]) | |
| segment_duration = current_word_time - segment_start_time | |
| # Only split if the previous segment would be long enough | |
| if segment_duration >= min_segment_duration: | |
| split_points.append(i) | |
| current_speaker = word_speaker | |
| # If too short, continue without splitting (speaker will be resolved by dominant speaker logic) | |
| else: | |
| split_points.append(i) | |
| current_speaker = word_speaker | |
| split_points.append(len(words)) # End point | |
| # Create sub-segments if we found speaker changes | |
| if len(split_points) <= 2: | |
| # No splits needed - process as single segment | |
| self._assign_dominant_speaker_to_segment(seg, speaker_at, best_speaker_for_interval) | |
| split_segments.append(seg) | |
| else: | |
| # Split into multiple segments | |
| for i in range(len(split_points) - 1): | |
| start_idx = split_points[i] | |
| end_idx = split_points[i + 1] | |
| if end_idx <= start_idx: | |
| continue | |
| subseg_words = words[start_idx:end_idx] | |
| if not subseg_words: | |
| continue | |
| # Calculate segment timing and text from words | |
| subseg_start = float(subseg_words[0]["start"]) | |
| subseg_end = float(subseg_words[-1]["end"]) | |
| subseg_text = " ".join(w.get("word", "").strip() for w in subseg_words if w.get("word", "").strip()) | |
| # Create new sub-segment | |
| new_seg = { | |
| "start": subseg_start, | |
| "end": subseg_end, | |
| "text": subseg_text, | |
| "words": subseg_words, | |
| "duration": subseg_end - subseg_start, | |
| } | |
| # Copy over other fields from original segment if they exist | |
| for key in ["avg_logprob"]: | |
| if key in seg: | |
| new_seg[key] = seg[key] | |
| # Assign dominant speaker to this sub-segment | |
| self._assign_dominant_speaker_to_segment(new_seg, speaker_at, best_speaker_for_interval) | |
| split_segments.append(new_seg) | |
| # Update transcription_results with split segments | |
| transcription_results = split_segments | |
| # Identify diarization segments that have no overlapping transcription segments | |
| unmatched_diarization_segments = [] | |
| for dseg in diarization_segments: | |
| d_start = float(dseg["start"]) | |
| d_end = float(dseg["end"]) | |
| # Calculate total coverage | |
| total_coverage = 0.0 | |
| for s in transcription_results: | |
| overlap = interval_overlap(d_start, d_end, float(s["start"]), float(s["end"])) | |
| total_coverage += overlap | |
| coverage_ratio = total_coverage / (d_end - d_start) | |
| is_well_covered = coverage_ratio >= 0.85 # 85% or more covered | |
| if not is_well_covered and (d_end - d_start)*(1-coverage_ratio) > 1.5: # If poorly covered, add to unmatched list | |
| unmatched_diarization_segments.append({ | |
| "start": d_start, | |
| "end": d_end, | |
| "speaker": dseg["speaker"], | |
| }) | |
| print("unmatched_diarization_segments", unmatched_diarization_segments) | |
| return transcription_results, unmatched_diarization_segments | |
| def _assign_dominant_speaker_to_segment(self, seg, speaker_at_func, best_speaker_for_interval_func): | |
| """Assign dominant speaker to a segment based on word durations and boundary stabilization.""" | |
| words = seg.get("words", []) | |
| if not words: | |
| # No words: use segment-level overlap | |
| seg["speaker"] = best_speaker_for_interval_func(float(seg["start"]), float(seg["end"])) | |
| return | |
| # 1) Determine dominant speaker by summed word durations | |
| speaker_dur = {} | |
| total_word_dur = 0.0 | |
| for w in words: | |
| dur = max(0.0, float(w["end"]) - float(w["start"])) | |
| total_word_dur += dur | |
| spk = w.get("speaker", "SPEAKER_00") | |
| speaker_dur[spk] = speaker_dur.get(spk, 0.0) + dur | |
| if speaker_dur: | |
| dominant_speaker = max(speaker_dur.items(), key=lambda kv: kv[1])[0] | |
| else: | |
| dominant_speaker = speaker_at_func((float(seg["start"]) + float(seg["end"])) / 2.0) | |
| # 2) Boundary stabilization: relabel tiny prefix/suffix runs to dominant | |
| seg_duration = max(1e-6, float(seg["end"]) - float(seg["start"])) | |
| max_boundary_sec = 0.5 # hard cap for how much to relabel at edges | |
| max_boundary_frac = 0.2 # or up to 20% of the segment duration | |
| # prefix | |
| prefix_dur = 0.0 | |
| prefix_count = 0 | |
| for w in words: | |
| if w.get("speaker") == dominant_speaker: | |
| break | |
| prefix_dur += max(0.0, float(w["end"]) - float(w["start"])) | |
| prefix_count += 1 | |
| if prefix_count > 0 and prefix_dur <= min(max_boundary_sec, max_boundary_frac * seg_duration): | |
| for i in range(prefix_count): | |
| words[i]["speaker"] = dominant_speaker | |
| # suffix | |
| suffix_dur = 0.0 | |
| suffix_count = 0 | |
| for w in reversed(words): | |
| if w.get("speaker") == dominant_speaker: | |
| break | |
| suffix_dur += max(0.0, float(w["end"]) - float(w["start"])) | |
| suffix_count += 1 | |
| if suffix_count > 0 and suffix_dur <= min(max_boundary_sec, max_boundary_frac * seg_duration): | |
| for i in range(len(words) - suffix_count, len(words)): | |
| words[i]["speaker"] = dominant_speaker | |
| # 3) Final segment speaker | |
| seg["speaker"] = dominant_speaker | |
| def group_segments_by_speaker(self, segments, max_gap=1.0, max_duration=30.0): | |
| """Group consecutive segments from the same speaker""" | |
| if not segments: | |
| return segments | |
| grouped_segments = [] | |
| current_group = segments[0].copy() | |
| sentence_end_pattern = r"[.!?]+" | |
| for segment in segments[1:]: | |
| time_gap = segment["start"] - current_group["end"] | |
| current_duration = current_group["end"] - current_group["start"] | |
| # Conditions for combining segments | |
| can_combine = ( | |
| segment["speaker"] == current_group["speaker"] and | |
| time_gap <= max_gap and | |
| current_duration < max_duration and | |
| not re.search(sentence_end_pattern, current_group["text"][-1:]) | |
| ) | |
| if can_combine: | |
| # Merge segments | |
| current_group["end"] = segment["end"] | |
| current_group["text"] += " " + segment["text"] | |
| current_group["words"].extend(segment["words"]) | |
| current_group["duration"] = current_group["end"] - current_group["start"] | |
| else: | |
| # Start new group | |
| grouped_segments.append(current_group) | |
| current_group = segment.copy() | |
| grouped_segments.append(current_group) | |
| # Clean up text | |
| for segment in grouped_segments: | |
| segment["text"] = re.sub(r"\s+", " ", segment["text"]).strip() | |
| #segment["text"] = re.sub(r"\s+([.,!?])", r"\1", segment["text"]) | |
| return grouped_segments | |
| def process_audio_transcribe(self, task_json, language=None, | |
| translate=False, prompt=None, batch_size=8, model_name: str = DEFAULT_MODEL): | |
| """Main processing function with diarization using task JSON for a single chunk. | |
| Transcribes full (preprocessed) audio once, performs diarization, merges speakers into transcription. | |
| """ | |
| if not task_json or not str(task_json).strip(): | |
| return {"error": "No JSON provided"} | |
| pre_meta = None | |
| try: | |
| print("Starting new processing pipeline...") | |
| # Step 1: Preprocess per chunk JSON | |
| print("Preprocessing chunk JSON...") | |
| pre_meta = self.preprocess_from_task_json(task_json) | |
| transcribe_options = pre_meta.get("options", None) | |
| if "chunk" in pre_meta: | |
| self.transcribe_chunk(pre_meta, language, translate, prompt, batch_size, model_name, transcribe_options) | |
| elif "segments" in pre_meta: | |
| self.transcribe_segments(pre_meta, language, translate, prompt, batch_size, model_name, transcribe_options) | |
| except Exception as e: | |
| import traceback | |
| traceback.print_exc() | |
| return {"error": f"Processing failed: {str(e)}"} | |
| def transcribe_chunk(self, pre_meta, language=None, | |
| translate=False, prompt=None, batch_size=8, model_name: str = DEFAULT_MODEL, transcribe_options: dict = None): | |
| """Main processing function with diarization using task JSON for a single chunk. | |
| Transcribes full (preprocessed) audio once, performs diarization, merges speakers into transcription. | |
| """ | |
| try: | |
| print("Transcribing chunk...") | |
| # Step 1: Preprocess per chunk JSON | |
| if pre_meta["chunk"].get("skip"): | |
| return {"segments": [], "language": "unknown", "num_speakers": 0, "transcription_method": "diarized_segments_batched", "batch_size": batch_size} | |
| wav_path = pre_meta["chunk"]["out_wav_path"] | |
| base_offset_s = float(pre_meta["chunk"].get("abs_start_ms", 0)) / 1000.0 | |
| # Step 2: Transcribe full audio once | |
| transcription_results, detected_language = self.transcribe_full_audio( | |
| wav_path, language, translate, prompt, batch_size, base_offset_s=base_offset_s, clip_timestamps=None, model_name=model_name, transcribe_options=transcribe_options | |
| ) | |
| # Step 6: Return results | |
| result = { | |
| "segments": transcription_results, | |
| "language": detected_language, | |
| "batch_size": batch_size, | |
| } | |
| # job_id = pre_meta["job_id"] | |
| # task_id = pre_meta["chunk_idx"] | |
| filekey = pre_meta["filekey"]#f"ai-transcribe/split/{job_id}-{task_id}.json" | |
| ret = upload_data_to_r2(json.dumps(result), "intermediate", filekey) | |
| if ret: | |
| return {"filekey": filekey} | |
| else: | |
| return {"error": "Failed to upload to R2"} | |
| except Exception as e: | |
| import traceback | |
| traceback.print_exc() | |
| return {"error": f"Processing failed: {str(e)}"} | |
| finally: | |
| # Clean up preprocessed wav | |
| if pre_meta and pre_meta["chunk"].get("out_wav_path") and os.path.exists(pre_meta["chunk"]["out_wav_path"]): | |
| try: | |
| os.unlink(pre_meta["chunk"]["out_wav_path"]) | |
| except Exception: | |
| pass | |
| def transcribe_segments(self, pre_meta, language=None, | |
| translate=False, prompt=None, batch_size=8, model_name: str = DEFAULT_MODEL, transcribe_options: dict = None): | |
| """Main processing function with diarization using task JSON for a single chunk. | |
| Transcribes full (preprocessed) audio once, performs diarization, merges speakers into transcription. | |
| """ | |
| try: | |
| print("Transcribing segments...") | |
| # Step 1: Preprocess per chunk JSON | |
| chunks = pre_meta["segments"] | |
| for chunk in chunks: | |
| if chunk.get("skip"): | |
| return {"segments": [], "language": "unknown", "num_speakers": 0, "transcription_method": "diarized_segments_batched", "batch_size": batch_size} | |
| wav_path = chunk["out_wav_path"] | |
| base_offset_s = float(chunk.get("abs_start_ms", 0)) / 1000.0 | |
| # Step 2: Transcribe full audio once | |
| transcription_results, detected_language = self.transcribe_full_audio( | |
| wav_path, language, translate, prompt, batch_size, base_offset_s=base_offset_s, clip_timestamps=None, model_name=model_name, transcribe_options=transcribe_options | |
| ) | |
| # Step 6: Return results | |
| result = { | |
| "chunk_idx": chunk["chunk_idx"], | |
| "channel": chunk["channel"], | |
| "job_id": pre_meta["job_id"], | |
| "segments": transcription_results, | |
| "language": detected_language, | |
| "batch_size": batch_size, | |
| } | |
| # job_id = pre_meta["job_id"] | |
| # task_id = pre_meta["chunk_idx"] | |
| filekey = pre_meta["filekey"]#f"ai-transcribe/split/{job_id}-{task_id}.json" | |
| ret = upload_data_to_r2(json.dumps(result), "intermediate", filekey) | |
| if ret: | |
| return {"filekey": filekey} | |
| else: | |
| return {"error": "Failed to upload to R2"} | |
| except Exception as e: | |
| import traceback | |
| traceback.print_exc() | |
| return {"error": f"Processing failed: {str(e)}"} | |
| finally: | |
| # Clean up preprocessed wav | |
| if pre_meta and pre_meta["segments"]: | |
| for chunk in pre_meta["segments"]: | |
| if chunk.get("out_wav_path") and os.path.exists(chunk["out_wav_path"]): | |
| try: | |
| os.unlink(chunk["out_wav_path"]) | |
| except Exception: | |
| pass | |
| # each call gets a GPU slice | |
| def process_audio_diarization(self, task_json, num_speakers=0): | |
| """Process audio for diarization only, returning speaker information. | |
| Args: | |
| task_json: Task JSON containing audio processing information | |
| num_speakers: Number of speakers (0 for auto-detection) | |
| Returns: | |
| str: filekey of uploaded JSON file containing diarization results | |
| """ | |
| if not task_json or not str(task_json).strip(): | |
| return {"error": "No JSON provided"} | |
| pre_meta = None | |
| try: | |
| print("Starting diarization-only pipeline...") | |
| # Step 1: Preprocess from task JSON | |
| print("Preprocessing chunk JSON...") | |
| pre_meta = self.preprocess_from_task_json(task_json) | |
| if pre_meta.get("skip"): | |
| # Return minimal result for skipped audio | |
| task = json.loads(task_json) | |
| job_id = task.get("job_id", "job") | |
| task_id = str(task["chunk"]["idx"]) | |
| result = { | |
| "num_speakers": 0, | |
| "speaker_embeddings": {} | |
| } | |
| filekey = pre_meta["filekey"]#f"ai-transcribe/split/{job_id}-{task_id}-diarization.json" | |
| ret = upload_data_to_r2(json.dumps(result), "intermediate", filekey) | |
| if ret: | |
| return filekey | |
| else: | |
| return {"error": "Failed to upload to R2"} | |
| wav_path = pre_meta["chunk"]["out_wav_path"] | |
| base_offset_s = float(pre_meta["chunk"].get("abs_start_ms", 0)) / 1000.0 | |
| # Step 2: Perform diarization | |
| print("Performing diarization...") | |
| start_time = time.time() | |
| diarization_segments, detected_num_speakers, speaker_embeddings = self.perform_diarization( | |
| wav_path, num_speakers if num_speakers > 0 else None, base_offset_s=base_offset_s | |
| ) | |
| diarization_time = time.time() - start_time | |
| print(f"Diarization completed in {diarization_time:.2f} seconds") | |
| # Step 3: Compose JSON response | |
| result = { | |
| "num_speakers": detected_num_speakers, | |
| "speaker_embeddings": speaker_embeddings, | |
| "diarization_segments": diarization_segments, | |
| } | |
| if pre_meta.get("channel", None): | |
| result["channel"] = pre_meta["channel"] | |
| # set channel in each diarization segment | |
| for seg in diarization_segments: | |
| seg["channel"] = pre_meta["channel"] | |
| # Step 4: Upload to R2 | |
| #job_id = pre_meta["job_id"] | |
| #task_id = pre_meta["chunk_idx"] | |
| #filekey = f"ai-transcribe/split/{job_id}-{task_id}-diarization.json" | |
| filekey = pre_meta["filekey"] | |
| ret = upload_data_to_r2(json.dumps(result), "intermediate", filekey) | |
| if ret: | |
| # Step 5: Return filekey | |
| return filekey | |
| else: | |
| return {"error": "Failed to upload to R2"} | |
| except Exception as e: | |
| import traceback | |
| traceback.print_exc() | |
| return {"error": f"Diarization processing failed: {str(e)}"} | |
| finally: | |
| # Clean up preprocessed wav | |
| if pre_meta and pre_meta.get("out_wav_path") and os.path.exists(pre_meta["out_wav_path"]): | |
| try: | |
| os.unlink(pre_meta["out_wav_path"]) | |
| except Exception: | |
| pass | |
| # each call gets a GPU slice | |
| def process_audio(self, task_json, num_speakers=None, language=None, | |
| translate=False, prompt=None, group_segments=True, batch_size=8, model_name: str = DEFAULT_MODEL): | |
| """Main processing function with diarization using task JSON for a single chunk. | |
| Transcribes full (preprocessed) audio once, performs diarization, merges speakers into transcription. | |
| """ | |
| if not task_json or not str(task_json).strip(): | |
| return {"error": "No JSON provided"} | |
| pre_meta = None | |
| try: | |
| print("Starting new processing pipeline...") | |
| # Step 1: Preprocess per chunk JSON | |
| print("Preprocessing chunk JSON...") | |
| pre_meta = self.preprocess_from_task_json(task_json) | |
| if pre_meta.get("skip"): | |
| return {"segments": [], "language": "unknown", "num_speakers": 0, "transcription_method": "diarized_segments_batched", "batch_size": batch_size} | |
| wav_path = pre_meta["out_wav_path"] | |
| base_offset_s = float(pre_meta.get("abs_start_ms", 0)) / 1000.0 | |
| # Step 3: Perform diarization with global offset | |
| diarization_segments, detected_num_speakers, speaker_embeddings = self.perform_diarization( | |
| wav_path, num_speakers, base_offset_s=base_offset_s | |
| ) | |
| # Convert diarization_segments to clip_timestamps format | |
| # Format: "start,end,start,end,..." with timestamps relative to the file (subtract base_offset_s) | |
| clip_timestamps_list = [] | |
| for seg in diarization_segments: | |
| # Convert global timestamps back to local file timestamps | |
| local_start = max(0.0, float(seg["start"]) - base_offset_s) | |
| local_end = max(local_start, float(seg["end"]) - base_offset_s) | |
| clip_timestamps_list.extend([str(local_start), str(local_end)]) | |
| clip_timestamps = ",".join(clip_timestamps_list) if clip_timestamps_list else None | |
| # Step 2: Transcribe full audio once | |
| transcription_results, detected_language = self.transcribe_full_audio( | |
| wav_path, language, translate, prompt, batch_size, base_offset_s=base_offset_s, clip_timestamps=None, model_name=model_name | |
| ) | |
| unmatched_diarization_segments = [] | |
| # Step 4: Merge diarization into transcription (assign speakers) | |
| transcription_results, unmatched_diarization_segments = self.assign_speakers_to_transcription( | |
| transcription_results, diarization_segments | |
| ) | |
| # Step 4.1: Transcribe diarization-only regions and merge | |
| if unmatched_diarization_segments: | |
| waveform, sample_rate = torchaudio.load(wav_path) | |
| extra_segments = [] | |
| for dseg in unmatched_diarization_segments: | |
| d_start = float(dseg["start"]) # global seconds | |
| d_end = float(dseg["end"]) # global seconds | |
| if d_end <= d_start: | |
| continue | |
| # Map global time to local file time | |
| local_start = max(0.0, d_start - float(base_offset_s)) | |
| local_end = max(local_start, d_end - float(base_offset_s)) | |
| start_sample = max(0, int(local_start * sample_rate)) | |
| end_sample = min(waveform.shape[1], int(local_end * sample_rate)) | |
| if end_sample <= start_sample: | |
| continue | |
| seg_wav = waveform[:, start_sample:end_sample].contiguous() | |
| tmp_f = tempfile.NamedTemporaryFile(suffix=".wav", delete=False) | |
| tmp_path = tmp_f.name | |
| tmp_f.close() | |
| try: | |
| torchaudio.save(tmp_path, seg_wav.cpu(), sample_rate) | |
| seg_transcription, _ = self.transcribe_full_audio( | |
| tmp_path, | |
| language=language if language is not None else None, | |
| translate=translate, | |
| prompt=prompt, | |
| batch_size=batch_size, | |
| base_offset_s=d_start, | |
| model_name=model_name | |
| ) | |
| extra_segments.extend(seg_transcription) | |
| finally: | |
| try: | |
| os.unlink(tmp_path) | |
| except Exception: | |
| pass | |
| if extra_segments: | |
| transcription_results.extend(extra_segments) | |
| transcription_results.sort(key=lambda s: float(s.get("start", 0.0))) | |
| # Re-assign speakers on the combined set | |
| transcription_results, _ = self.assign_speakers_to_transcription( | |
| transcription_results, diarization_segments | |
| ) | |
| # Step 5: Group segments if requested | |
| if group_segments: | |
| transcription_results = self.group_segments_by_speaker(transcription_results) | |
| # Step 6: Return results | |
| result = { | |
| "segments": transcription_results, | |
| "language": detected_language, | |
| "num_speakers": detected_num_speakers, | |
| "transcription_method": "diarized_segments_batched", | |
| "batch_size": batch_size, | |
| "speaker_embeddings": speaker_embeddings, | |
| } | |
| job_id = pre_meta["job_id"] | |
| task_id = pre_meta["chunk_idx"] | |
| filekey = f"ai-transcribe/split/{job_id}-{task_id}.json" | |
| ret = upload_data_to_r2(json.dumps(result), "intermediate", filekey) | |
| if ret: | |
| return {"filekey": filekey} | |
| else: | |
| return {"error": "Failed to upload to R2"} | |
| except Exception as e: | |
| import traceback | |
| traceback.print_exc() | |
| return {"error": f"Processing failed: {str(e)}"} | |
| finally: | |
| # Clean up preprocessed wav | |
| if pre_meta and pre_meta.get("out_wav_path") and os.path.exists(pre_meta["out_wav_path"]): | |
| try: | |
| os.unlink(pre_meta["out_wav_path"]) | |
| except Exception: | |
| pass | |
| # Initialize transcriber | |
| transcriber = WhisperTranscriber() | |
| def format_segments_for_display(result): | |
| """Format segments for display in Gradio""" | |
| if "error" in result: | |
| return f"β Error: {result['error']}" | |
| segments = result.get("segments", []) | |
| language = result.get("language", "unknown") | |
| num_speakers = result.get("num_speakers", 1) | |
| method = result.get("transcription_method", "unknown") | |
| batch_size = result.get("batch_size", "N/A") | |
| output = f"π― **Detection Results:**\n" | |
| output += f"- Language: {language}\n" | |
| output += f"- Speakers: {num_speakers}\n" | |
| output += f"- Segments: {len(segments)}\n" | |
| output += f"- Method: {method}\n" | |
| output += f"- Batch Size: {batch_size}\n\n" | |
| output += "π **Transcription:**\n\n" | |
| for i, segment in enumerate(segments, 1): | |
| start_time = str(datetime.timedelta(seconds=int(segment["start"]))) | |
| end_time = str(datetime.timedelta(seconds=int(segment["end"]))) | |
| speaker = segment.get("speaker", "SPEAKER_00") | |
| text = segment["text"] | |
| output += f"**{speaker}** ({start_time} β {end_time})\n" | |
| output += f"{text}\n\n" | |
| return output | |
| def process_audio_gradio(task_json, num_speakers, language, translate, prompt, group_segments, use_diarization, batch_size, model_name): | |
| """Gradio interface function""" | |
| result = transcriber.process_audio_transcribe( | |
| task_json=task_json, | |
| num_speakers=num_speakers if num_speakers > 0 else None, | |
| language=language if language != "auto" else None, | |
| translate=translate, | |
| prompt=prompt if prompt and prompt.strip() else None, | |
| group_segments=group_segments, | |
| batch_size=batch_size, | |
| model_name=model_name | |
| ) | |
| ''' | |
| result = transcriber.process_audio_transcribe( | |
| task_json=task_json, | |
| language=language if language != "auto" else None, | |
| translate=translate, | |
| prompt=prompt if prompt and prompt.strip() else None, | |
| batch_size=batch_size, | |
| model_name=model_name | |
| ) | |
| ''' | |
| #formatted_output = format_segments_for_display(result) | |
| return "OK", result | |
| # Create Gradio interface | |
| demo = gr.Blocks( | |
| title="ποΈ Whisper Transcription with Speaker Diarization", | |
| theme="default" | |
| ) | |
| with demo: | |
| gr.Markdown(""" | |
| # ποΈ Advanced Audio Transcription & Speaker Diarization | |
| Upload an audio file to get accurate transcription with speaker identification, powered by: | |
| - **Faster-Whisper Large V3 Turbo** with batched inference for optimal performance | |
| - **Pyannote 3.1** for speaker diarization | |
| - **ZeroGPU** acceleration for optimal performance | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| task_json_input = gr.Textbox( | |
| label="π§Ύ Paste Task JSON", | |
| placeholder="Paste the per-chunk task JSON here...", | |
| lines=16, | |
| ) | |
| with gr.Accordion("βοΈ Advanced Settings", open=False): | |
| model_name_dropdown = gr.Dropdown( | |
| label="Whisper Model", | |
| choices=list(MODELS.keys()), | |
| value=DEFAULT_MODEL, | |
| info="Select the Whisper model to use for transcription." | |
| ) | |
| use_diarization = gr.Checkbox( | |
| label="Enable Speaker Diarization", | |
| value=True, | |
| info="Uncheck for faster transcription without speaker identification" | |
| ) | |
| batch_size = gr.Slider( | |
| minimum=1, | |
| maximum=128, | |
| value=16, | |
| step=1, | |
| label="Batch Size", | |
| info="Higher values = faster processing but more GPU memory usage. Recommended: 8-24" | |
| ) | |
| num_speakers = gr.Slider( | |
| minimum=0, | |
| maximum=20, | |
| value=0, | |
| step=1, | |
| label="Number of Speakers (0 = auto-detect)", | |
| visible=True | |
| ) | |
| language = gr.Dropdown( | |
| choices=["auto", "en", "es", "fr", "de", "it", "pt", "ru", "ja", "ko", "zh"], | |
| value="auto", | |
| label="Language" | |
| ) | |
| translate = gr.Checkbox( | |
| label="Translate to English", | |
| value=False | |
| ) | |
| prompt = gr.Textbox( | |
| label="Vocabulary Prompt (names, acronyms, etc.)", | |
| placeholder="Enter names, technical terms, or context...", | |
| lines=2 | |
| ) | |
| group_segments = gr.Checkbox( | |
| label="Group segments by speaker/time", | |
| value=True | |
| ) | |
| process_btn = gr.Button("π Transcribe Audio", variant="primary") | |
| with gr.Column(): | |
| output_text = gr.Markdown( | |
| label="π Transcription Results", | |
| value="Paste task JSON and click 'Transcribe Audio' to get started!" | |
| ) | |
| output_json = gr.JSON( | |
| label="π§ Raw Output (JSON)", | |
| visible=False | |
| ) | |
| # Update visibility of num_speakers based on diarization toggle | |
| use_diarization.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=[use_diarization], | |
| outputs=[num_speakers] | |
| ) | |
| # Event handlers | |
| process_btn.click( | |
| fn=process_audio_gradio, | |
| inputs=[ | |
| task_json_input, | |
| num_speakers, | |
| language, | |
| translate, | |
| prompt, | |
| group_segments, | |
| use_diarization, | |
| batch_size, | |
| model_name_dropdown | |
| ], | |
| outputs=[output_text, output_json] | |
| ) | |
| # Examples | |
| gr.Markdown("### π Usage Tips:") | |
| gr.Markdown(""" | |
| - Paste a single-chunk task JSON matching the preprocess schema | |
| - Batch Size: Higher values (16-24) = faster but uses more GPU memory | |
| - Speaker diarization: Enable for speaker identification (slower) | |
| - Languages: Supports 100+ languages with auto-detection | |
| - Vocabulary: Add names and technical terms in the prompt for better accuracy | |
| """) | |
| if __name__ == "__main__": | |
| demo.launch(debug=True) | |