from dotenv import load_dotenv from openai import OpenAI import json import os import requests from pypdf import PdfReader import gradio as gr load_dotenv(override=True) def push(text): token = os.getenv("PUSHOVER_TOKEN") user = os.getenv("PUSHOVER_USER") if not token or not user: print("Pushover: Missing PUSHOVER_TOKEN or PUSHOVER_USER", flush=True) return try: response = requests.post( "https://api.pushover.net/1/messages.json", data={ "token": token, "user": user, "message": text, }, timeout=10 ) response.raise_for_status() print(f"Pushover: Message sent successfully", flush=True) except requests.exceptions.RequestException as e: print(f"Pushover: Error sending message - {e}", flush=True) except Exception as e: print(f"Pushover: Unexpected error - {e}", flush=True) def record_user_details(email, name="Name not provided", notes="not provided"): print(f"Tool called: record_user_details(email={email}, name={name}, notes={notes})", flush=True) message = f"New contact: {name}\nEmail: {email}\nNotes: {notes}" push(message) return {"recorded": "ok"} def record_unknown_question(question): print(f"Tool called: record_unknown_question(question={question})", flush=True) push(f"Unanswered question: {question}") return {"recorded": "ok"} record_user_details_json = { "name": "record_user_details", "description": "Use this tool to record that a user is interested in being in touch and provided an email address. Extract the actual email address from the user's message - do not use placeholders like '[email]' or 'email@example.com'. Use the exact email address the user provided.", "parameters": { "type": "object", "properties": { "email": { "type": "string", "description": "The actual email address provided by the user in their message. Extract it exactly as they wrote it. Must be a real email address, not a placeholder." }, "name": { "type": "string", "description": "The user's name, if they provided it. Use 'Name not provided' if no name was given." }, "notes": { "type": "string", "description": "Any additional information about the conversation that's worth recording to give context. Use 'not provided' if there's nothing notable." } }, "required": ["email"], "additionalProperties": False } } record_unknown_question_json = { "name": "record_unknown_question", "description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer", "parameters": { "type": "object", "properties": { "question": { "type": "string", "description": "The question that couldn't be answered" }, }, "required": ["question"], "additionalProperties": False } } tools = [{"type": "function", "function": record_user_details_json}, {"type": "function", "function": record_unknown_question_json}] class Me: def __init__(self): self.openai = OpenAI() self.name = "Joshua" # Read LinkedIn and Resume PDFs from local me/ directory self.linkedin = "" self.resume = "" try: reader = PdfReader("me/linkedin.pdf") for page in reader.pages: text = page.extract_text() if text: self.linkedin += text except Exception: pass try: reader_r = PdfReader("me/resume.pdf") for page in reader_r.pages: text = page.extract_text() if text: self.resume += text except Exception: pass with open("me/summary.txt", "r", encoding="utf-8") as f: self.summary = f.read() def handle_tool_call(self, tool_calls): results = [] for tool_call in tool_calls: tool_name = tool_call.function.name arguments = json.loads(tool_call.function.arguments) print(f"Tool called: {tool_name}", flush=True) print(f"Arguments: {arguments}", flush=True) tool = globals().get(tool_name) result = tool(**arguments) if tool else {} results.append({"role": "tool", "content": json.dumps(result), "tool_call_id": tool_call.id}) return results def system_prompt(self): system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, " \ f"particularly questions related to {self.name}'s career, background, skills and experience. " \ f"Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. " \ f"You are given a summary, a LinkedIn profile, and a resume which you can use to answer questions. " \ f"Be professional and engaging, as if talking to a potential client or future employer who came across the website. " \ f"If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer. " \ f"If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. " system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n## Resume:\n{self.resume}\n\n" system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}." return system_prompt def _evaluate_with_anthropic(self, reply, message, history_messages): api_key = os.getenv("ANTHROPIC_API_KEY") if not api_key: return {"is_acceptable": True, "feedback": "Evaluator unavailable"} rubric = ( "You are an evaluator that decides whether a response is acceptable. " "Judge helpfulness, professionalism, factuality with respect to the provided persona documents, and clarity. " "Return JSON with: is_acceptable (true/false) and feedback (1-2 short sentences)." ) convo = json.dumps(history_messages, ensure_ascii=False) prompt = ( f"Conversation so far (JSON array of messages):\n{convo}\n\n" f"User message: {message}\n\nAgent reply: {reply}\n\nProvide only the JSON object." ) url = "https://api.anthropic.com/v1/messages" headers = { "x-api-key": api_key, "anthropic-version": "2023-06-01", "content-type": "application/json", } payload = { "model": "claude-3-7-sonnet-latest", "max_tokens": 300, "messages": [ {"role": "system", "content": rubric}, {"role": "user", "content": prompt}, ], } try: r = requests.post(url, headers=headers, data=json.dumps(payload), timeout=60) r.raise_for_status() out = r.json() parts = out.get("content", []) text = "".join([p.get("text", "") for p in parts if isinstance(p, dict)]) try: data = json.loads(text) except Exception: data = {"is_acceptable": True, "feedback": text.strip()[:400]} if "is_acceptable" not in data: data["is_acceptable"] = True if "feedback" not in data: data["feedback"] = "" return data except Exception as e: return {"is_acceptable": True, "feedback": str(e)} def chat(self, message, history): base_system = self.system_prompt() messages = [{"role": "system", "content": base_system}] + history + [{"role": "user", "content": message}] # First attempt done = False while not done: response = self.openai.chat.completions.create(model="gpt-4o-mini", messages=messages, tools=tools) if response.choices[0].finish_reason == "tool_calls": tool_msg = response.choices[0].message tool_calls = tool_msg.tool_calls results = self.handle_tool_call(tool_calls) messages.append(tool_msg) messages.extend(results) else: done = True reply = response.choices[0].message.content # Evaluate and optionally retry up to 2 times eval_history = [m for m in messages if m["role"] in ("system", "user", "assistant", "tool")] evaluation = self._evaluate_with_anthropic(reply, message, eval_history) attempts = 0 while not evaluation.get("is_acceptable", True) and attempts < 2: attempts += 1 improved_system = base_system + ( "\n\n## Previous answer rejected\n" f"Your previous answer was:\n{reply}\n\n" f"Reason for rejection (from evaluator):\n{evaluation.get('feedback','')}\n\n" "Revise your answer to address the feedback while staying faithful to the provided documents." ) messages = [{"role": "system", "content": improved_system}] + history + [{"role": "user", "content": message}] done = False while not done: response = self.openai.chat.completions.create(model="gpt-4o-mini", messages=messages, tools=tools) if response.choices[0].finish_reason == "tool_calls": tool_msg = response.choices[0].message tool_calls = tool_msg.tool_calls results = self.handle_tool_call(tool_calls) messages.append(tool_msg) messages.extend(results) else: done = True reply = response.choices[0].message.content eval_history = [m for m in messages if m["role"] in ("system", "user", "assistant", "tool")] evaluation = self._evaluate_with_anthropic(reply, message, eval_history) return reply if __name__ == "__main__": me = Me() gr.ChatInterface(me.chat, type="messages").launch()