import streamlit as st import os import torch #import math import numpy as np #import matplotlib.pyplot as plt #import pathlib #from AtomLenz import * #from utils_graph import * #from Object_Smiles import Objects_Smiles #from robust_detection import wandb_config from robust_detection import utils from robust_detection.models.rcnn import RCNN from robust_detection.data_utils.rcnn_data_utils import Objects_RCNN, COCO_RCNN import pytorch_lightning as pl from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.loggers import CSVLogger from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint from pytorch_lightning.callbacks.early_stopping import EarlyStopping from pytorch_lightning.callbacks import LearningRateMonitor from rdkit import Chem from rdkit.Chem import AllChem from rdkit import DataStructs from PIL import Image model_cls = RCNN experiment_path_atoms="./models/atoms_model/" dir_list = os.listdir(experiment_path_atoms) dir_list = [os.path.join(experiment_path_atoms,f) for f in dir_list] dir_list.sort(key=os.path.getctime, reverse=True) checkpoint_file_atoms = [f for f in dir_list if "ckpt" in f][0] model_atom = model_cls.load_from_checkpoint(checkpoint_file_atoms) model_atom.model.roi_heads.score_thresh = 0.65 st.title("Atom Level Entity Detector") file_name = st.file_uploader("Upload a chemical structure candidate image") if file_name is not None: col1, col2 = st.columns(2) image = Image.open(file_name) col1.image(image, use_column_width=True) x = st.slider('Select a value') st.write(x, 'squared is', x * x)