implementing app
Browse files
app.py
CHANGED
|
@@ -86,12 +86,12 @@ if image_file is not None:
|
|
| 86 |
#st.success("Saved File")
|
| 87 |
dataset.prepare_data()
|
| 88 |
trainer = pl.Trainer(logger=False)
|
| 89 |
-
st.
|
| 90 |
atom_preds = trainer.predict(model_atom, dataset.test_dataloader())
|
| 91 |
bond_preds = trainer.predict(model_bond, dataset.test_dataloader())
|
| 92 |
stereo_preds = trainer.predict(model_stereo, dataset.test_dataloader())
|
| 93 |
charge_preds = trainer.predict(model_charge, dataset.test_dataloader())
|
| 94 |
-
st.
|
| 95 |
#st.write(atom_preds)
|
| 96 |
plt.imshow(image, cmap="gray")
|
| 97 |
for bbox, label in zip(atom_preds[0]['boxes'][0], atom_preds[0]['preds'][0]):
|
|
|
|
| 86 |
#st.success("Saved File")
|
| 87 |
dataset.prepare_data()
|
| 88 |
trainer = pl.Trainer(logger=False)
|
| 89 |
+
st.toast('Predicting atoms,bonds,charges,..., please wait')
|
| 90 |
atom_preds = trainer.predict(model_atom, dataset.test_dataloader())
|
| 91 |
bond_preds = trainer.predict(model_bond, dataset.test_dataloader())
|
| 92 |
stereo_preds = trainer.predict(model_stereo, dataset.test_dataloader())
|
| 93 |
charge_preds = trainer.predict(model_charge, dataset.test_dataloader())
|
| 94 |
+
st.toast('Done')
|
| 95 |
#st.write(atom_preds)
|
| 96 |
plt.imshow(image, cmap="gray")
|
| 97 |
for bbox, label in zip(atom_preds[0]['boxes'][0], atom_preds[0]['preds'][0]):
|