Spaces:
Sleeping
Sleeping
Upload app files
Browse files- app.py +32 -0
- cell_classifier_model.joblib +3 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import joblib
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from scipy.sparse import load_npz
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
# Load the saved model and a small subset of the data for the demo
|
| 8 |
+
model = joblib.load("cell_classifier_model.joblib")
|
| 9 |
+
X_data = load_npz("./data/X_data.npz")
|
| 10 |
+
|
| 11 |
+
def predict_random_cell():
|
| 12 |
+
# Select a random cell from the dataset
|
| 13 |
+
random_index = np.random.randint(0, X_data.shape[0])
|
| 14 |
+
cell_data = X_data[random_index]
|
| 15 |
+
|
| 16 |
+
# Make a prediction
|
| 17 |
+
# The model expects a 2D array, so we reshape it
|
| 18 |
+
prediction = model.predict(cell_data.reshape(1, -1))[0]
|
| 19 |
+
|
| 20 |
+
return f"Selected a random cell from the dataset.\n\nModel Prediction: This cell belongs to Cluster {prediction}."
|
| 21 |
+
|
| 22 |
+
# Create the Gradio web interface
|
| 23 |
+
iface = gr.Interface(
|
| 24 |
+
fn=predict_random_cell,
|
| 25 |
+
inputs=None, # The user doesn't need to provide input
|
| 26 |
+
outputs=gr.Textbox(label="Prediction Result", lines=3),
|
| 27 |
+
title="CAR-T Cell Cluster Predictor",
|
| 28 |
+
description="Click the 'Submit' button to select a random cell from our dataset and see the model's prediction for which cluster it belongs to."
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# Launch the app
|
| 32 |
+
iface.launch()
|
cell_classifier_model.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:156808da11a0dea0574581291680d2555ccc9f19d44e08151874df60bf19a325
|
| 3 |
+
size 63255577
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scikit-learn
|
| 2 |
+
pandas
|
| 3 |
+
numpy
|
| 4 |
+
scipy
|
| 5 |
+
joblib
|
| 6 |
+
gradio
|