Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,9 +20,14 @@ from transformers import pipeline
|
|
| 20 |
import spaces
|
| 21 |
import librosa
|
| 22 |
from txtsplit import txtsplit
|
|
|
|
|
|
|
| 23 |
|
| 24 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
pipe = pipeline(
|
| 27 |
"automatic-speech-recognition",
|
| 28 |
model="openai/whisper-large-v3-turbo",
|
|
@@ -80,6 +85,9 @@ E2TTS_ema_model, E2TTS_base_model = load_model("E2TTS_Base", UNetT, E2TTS_model_
|
|
| 80 |
@spaces.GPU
|
| 81 |
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress = gr.Progress()):
|
| 82 |
print(gen_text)
|
|
|
|
|
|
|
|
|
|
| 83 |
gr.Info("Converting audio...")
|
| 84 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
| 85 |
aseg = AudioSegment.from_file(ref_audio_orig)
|
|
|
|
| 20 |
import spaces
|
| 21 |
import librosa
|
| 22 |
from txtsplit import txtsplit
|
| 23 |
+
from detoxify import Detoxify
|
| 24 |
+
|
| 25 |
|
| 26 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
| 27 |
|
| 28 |
+
model = Detoxify('original', device=device)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
pipe = pipeline(
|
| 32 |
"automatic-speech-recognition",
|
| 33 |
model="openai/whisper-large-v3-turbo",
|
|
|
|
| 85 |
@spaces.GPU
|
| 86 |
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress = gr.Progress()):
|
| 87 |
print(gen_text)
|
| 88 |
+
if model.predict(text)['toxicity'] > 0.8:
|
| 89 |
+
print("Flagged for toxicity:", gen_text)
|
| 90 |
+
raise gr.Error("Your text was flagged for toxicity, please try again with a different text.")
|
| 91 |
gr.Info("Converting audio...")
|
| 92 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
| 93 |
aseg = AudioSegment.from_file(ref_audio_orig)
|