Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import fitz # PyMuPDF for extracting text from PDFs
|
|
| 3 |
from transformers import AutoTokenizer, AutoModel
|
| 4 |
import torch
|
| 5 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
-
|
| 7 |
|
| 8 |
# Load the NASA-specific bi-encoder model and tokenizer
|
| 9 |
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
|
|
@@ -18,8 +18,8 @@ def extract_text_from_pdf(pdf_file):
|
|
| 18 |
text += page.get_text() # Extract text from each page
|
| 19 |
return text
|
| 20 |
|
| 21 |
-
# Function to generate embeddings
|
| 22 |
-
def
|
| 23 |
# Tokenize the text and create input tensors
|
| 24 |
inputs = bi_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 25 |
|
|
@@ -31,14 +31,10 @@ def generate_embedding(text):
|
|
| 31 |
# Mean pooling to get the final embedding for the text
|
| 32 |
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
# Reshape the embeddings and calculate cosine similarity
|
| 39 |
-
embedding1 = embedding1.reshape(1, -1)
|
| 40 |
-
embedding2 = embedding2.reshape(1, -1)
|
| 41 |
-
return cosine_similarity(embedding1, embedding2)[0][0]
|
| 42 |
|
| 43 |
# Function to handle the full workflow: extract text, generate embeddings, and compute similarity
|
| 44 |
def compare_pdfs(pdf1, pdf2):
|
|
@@ -46,20 +42,31 @@ def compare_pdfs(pdf1, pdf2):
|
|
| 46 |
text1 = extract_text_from_pdf(pdf1)
|
| 47 |
text2 = extract_text_from_pdf(pdf2)
|
| 48 |
|
| 49 |
-
# Generate embeddings
|
| 50 |
-
embedding1 =
|
| 51 |
-
embedding2 =
|
| 52 |
|
| 53 |
# Compute cosine similarity between the two embeddings
|
| 54 |
similarity_score = compute_cosine_similarity(embedding1, embedding2)
|
| 55 |
-
|
| 56 |
-
# Return the similarity score
|
| 57 |
-
return f"The cosine similarity between the two PDF documents is: {similarity_score:.4f}"
|
| 58 |
|
| 59 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
inputs = [gr.File(label="Upload Human SCDD"), gr.File(label="Upload AI SCDD")]
|
| 61 |
-
outputs =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
# Set up the Gradio interface
|
| 64 |
gr.Interface(fn=compare_pdfs, inputs=inputs, outputs=outputs, title="AI-Human SCDD Similarity Checker with NASA Bi-Encoder").launch()
|
| 65 |
|
|
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModel
|
| 4 |
import torch
|
| 5 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
+
import numpy as np
|
| 7 |
|
| 8 |
# Load the NASA-specific bi-encoder model and tokenizer
|
| 9 |
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
|
|
|
|
| 18 |
text += page.get_text() # Extract text from each page
|
| 19 |
return text
|
| 20 |
|
| 21 |
+
# Function to generate embeddings and return dimensions
|
| 22 |
+
def generate_embedding_with_dim(text):
|
| 23 |
# Tokenize the text and create input tensors
|
| 24 |
inputs = bi_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 25 |
|
|
|
|
| 31 |
# Mean pooling to get the final embedding for the text
|
| 32 |
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
| 33 |
|
| 34 |
+
# Get the number of dimensions
|
| 35 |
+
embedding_dim = embedding.shape[0]
|
| 36 |
+
|
| 37 |
+
return embedding, f"Embedding Dimensions: {embedding_dim}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
# Function to handle the full workflow: extract text, generate embeddings, and compute similarity
|
| 40 |
def compare_pdfs(pdf1, pdf2):
|
|
|
|
| 42 |
text1 = extract_text_from_pdf(pdf1)
|
| 43 |
text2 = extract_text_from_pdf(pdf2)
|
| 44 |
|
| 45 |
+
# Generate embeddings and get their dimensions
|
| 46 |
+
embedding1, dim1 = generate_embedding_with_dim(text1)
|
| 47 |
+
embedding2, dim2 = generate_embedding_with_dim(text2)
|
| 48 |
|
| 49 |
# Compute cosine similarity between the two embeddings
|
| 50 |
similarity_score = compute_cosine_similarity(embedding1, embedding2)
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
# Return similarity score + embedding dimensions
|
| 53 |
+
return f"The cosine similarity between the two PDFs is: {similarity_score:.4f}", dim1, dim2
|
| 54 |
+
|
| 55 |
+
# Function to compute the cosine similarity between two embeddings
|
| 56 |
+
def compute_cosine_similarity(embedding1, embedding2):
|
| 57 |
+
embedding1 = embedding1.reshape(1, -1)
|
| 58 |
+
embedding2 = embedding2.reshape(1, -1)
|
| 59 |
+
return cosine_similarity(embedding1, embedding2)[0][0]
|
| 60 |
+
|
| 61 |
+
# Gradio interface: accept two PDFs, show similarity + embedding dimensions
|
| 62 |
inputs = [gr.File(label="Upload Human SCDD"), gr.File(label="Upload AI SCDD")]
|
| 63 |
+
outputs = [
|
| 64 |
+
gr.Textbox(label="Cosine Similarity Score"),
|
| 65 |
+
gr.Textbox(label="Embedding Dimensions (PDF 1)"),
|
| 66 |
+
gr.Textbox(label="Embedding Dimensions (PDF 2)")
|
| 67 |
+
]
|
| 68 |
|
| 69 |
# Set up the Gradio interface
|
| 70 |
gr.Interface(fn=compare_pdfs, inputs=inputs, outputs=outputs, title="AI-Human SCDD Similarity Checker with NASA Bi-Encoder").launch()
|
| 71 |
|
| 72 |
+
|