Spaces:
Sleeping
Sleeping
Initial commit of CVE decoder application
Browse files- .github/workflows/sync-to-hf.yml +26 -0
- app.py +615 -0
- requirements.txt +5 -0
.github/workflows/sync-to-hf.yml
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: Sync to Hugging Face hub
|
| 2 |
+
on:
|
| 3 |
+
push:
|
| 4 |
+
branches: [main]
|
| 5 |
+
workflow_dispatch:
|
| 6 |
+
|
| 7 |
+
jobs:
|
| 8 |
+
sync-to-hub:
|
| 9 |
+
runs-on: ubuntu-latest
|
| 10 |
+
steps:
|
| 11 |
+
- uses: actions/checkout@v3
|
| 12 |
+
with:
|
| 13 |
+
fetch-depth: 0
|
| 14 |
+
lfs: true
|
| 15 |
+
|
| 16 |
+
- name: Push to hub
|
| 17 |
+
env:
|
| 18 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 19 |
+
HF_USERNAME: MMADS
|
| 20 |
+
SPACE_NAME: cve-decoder
|
| 21 |
+
run: |
|
| 22 |
+
# Add HuggingFace Space as remote
|
| 23 |
+
git remote add space https://${HF_USERNAME}:${HF_TOKEN}@huggingface.co/spaces/${HF_USERNAME}/${SPACE_NAME}
|
| 24 |
+
|
| 25 |
+
# Force push to space
|
| 26 |
+
git push --force space main
|
app.py
ADDED
|
@@ -0,0 +1,615 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
from collections import OrderedDict
|
| 5 |
+
from datetime import datetime, timedelta
|
| 6 |
+
from typing import Dict, Optional, Tuple
|
| 7 |
+
from threading import Lock
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import plotly.express as px
|
| 13 |
+
import requests
|
| 14 |
+
from requests.adapters import HTTPAdapter
|
| 15 |
+
from urllib3.util.retry import Retry
|
| 16 |
+
|
| 17 |
+
# Configure logging for the application
|
| 18 |
+
logging.basicConfig(
|
| 19 |
+
level=logging.INFO,
|
| 20 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 21 |
+
)
|
| 22 |
+
logger = logging.getLogger(__name__)
|
| 23 |
+
|
| 24 |
+
# --- Constants and Global Variables ---
|
| 25 |
+
|
| 26 |
+
CURRENT_YEAR = datetime.now().year
|
| 27 |
+
# --- REFACTORED: Use NVD API v2.0 endpoint ---
|
| 28 |
+
NVD_API_V2_URL = "https://services.nvd.nist.gov/rest/json/cves/2.0"
|
| 29 |
+
RESULTS_PER_PAGE = 2000 # Max allowed by the API
|
| 30 |
+
|
| 31 |
+
# Thread-safe cache with lock
|
| 32 |
+
CACHE_MAX_SIZE = 5
|
| 33 |
+
DATAFRAME_CACHE: Dict[int, Tuple[pd.DataFrame, float]] = OrderedDict()
|
| 34 |
+
CACHE_LOCK = Lock()
|
| 35 |
+
CACHE_TTL = 3600 # Cache TTL in seconds (1 hour)
|
| 36 |
+
|
| 37 |
+
# HTTP session with retry strategy
|
| 38 |
+
SESSION = requests.Session()
|
| 39 |
+
retry_strategy = Retry(
|
| 40 |
+
total=5, # Increased retries for API robustness
|
| 41 |
+
backoff_factor=1,
|
| 42 |
+
status_forcelist=[429, 500, 502, 503, 504],
|
| 43 |
+
)
|
| 44 |
+
adapter = HTTPAdapter(max_retries=retry_strategy)
|
| 45 |
+
SESSION.mount("http://", adapter)
|
| 46 |
+
SESSION.mount("https://", adapter)
|
| 47 |
+
|
| 48 |
+
# NVD API Key from environment variables
|
| 49 |
+
NVD_API_KEY = os.environ.get("NVD_API_KEY")
|
| 50 |
+
if NVD_API_KEY:
|
| 51 |
+
logger.info("NVD API key found and will be used.")
|
| 52 |
+
SESSION.headers.update({"apiKey": NVD_API_KEY})
|
| 53 |
+
else:
|
| 54 |
+
logger.warning("NVD_API_KEY environment variable not set. Using public, rate-limited access.")
|
| 55 |
+
|
| 56 |
+
# Profiles for tailoring LLM-generated summaries to different audiences
|
| 57 |
+
AUDIENCE_PROFILES = {
|
| 58 |
+
"Cybersecurity Professional": {
|
| 59 |
+
"focus": "threat assessment, attack vectors, mitigation strategies, and security controls",
|
| 60 |
+
"tone": "technical and precise",
|
| 61 |
+
"priorities": ["exploitation methods", "defensive measures", "risk assessment", "compliance implications"]
|
| 62 |
+
},
|
| 63 |
+
"Data Scientist": {
|
| 64 |
+
"focus": "data exposure risks, model vulnerabilities, and statistical analysis implications",
|
| 65 |
+
"tone": "analytical and research-oriented",
|
| 66 |
+
"priorities": ["data integrity", "model security", "pipeline vulnerabilities", "privacy concerns"]
|
| 67 |
+
},
|
| 68 |
+
"Data Engineer": {
|
| 69 |
+
"focus": "infrastructure vulnerabilities, data pipeline security, and system architecture impacts",
|
| 70 |
+
"tone": "technical with infrastructure emphasis",
|
| 71 |
+
"priorities": ["database security", "ETL vulnerabilities", "infrastructure risks", "data flow security"]
|
| 72 |
+
},
|
| 73 |
+
"Full-Stack Developer": {
|
| 74 |
+
"focus": "code vulnerabilities, dependency risks, and implementation fixes",
|
| 75 |
+
"tone": "practical and code-oriented",
|
| 76 |
+
"priorities": ["code examples", "library updates", "patch implementation", "secure coding practices"]
|
| 77 |
+
},
|
| 78 |
+
"Product Owner": {
|
| 79 |
+
"focus": "business impact, user experience, and prioritization for backlog",
|
| 80 |
+
"tone": "business-oriented with technical context",
|
| 81 |
+
"priorities": ["user impact", "feature implications", "timeline considerations", "resource requirements"]
|
| 82 |
+
},
|
| 83 |
+
"Manager": {
|
| 84 |
+
"focus": "business risk, resource allocation, and strategic implications",
|
| 85 |
+
"tone": "executive summary style",
|
| 86 |
+
"priorities": ["business impact", "cost implications", "team requirements", "timeline urgency"]
|
| 87 |
+
}
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
# Valid year range for NVD feeds
|
| 91 |
+
MIN_YEAR = 2002
|
| 92 |
+
MAX_YEAR = CURRENT_YEAR
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# --- Utility Functions ---
|
| 96 |
+
|
| 97 |
+
def validate_year(year: int) -> bool:
|
| 98 |
+
"""Validates if the year is within the acceptable range."""
|
| 99 |
+
return MIN_YEAR <= year <= MAX_YEAR
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def clean_cache() -> None:
|
| 103 |
+
"""Removes expired entries from the cache."""
|
| 104 |
+
current_time = time.time()
|
| 105 |
+
with CACHE_LOCK:
|
| 106 |
+
expired_keys = [
|
| 107 |
+
key for key, (_, timestamp) in DATAFRAME_CACHE.items()
|
| 108 |
+
if current_time - timestamp > CACHE_TTL
|
| 109 |
+
]
|
| 110 |
+
for key in expired_keys:
|
| 111 |
+
if key in DATAFRAME_CACHE:
|
| 112 |
+
del DATAFRAME_CACHE[key]
|
| 113 |
+
logger.info(f"Removed expired cache entry for year {key}")
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# --- Data Fetching and Parsing (REFACTORED for API v2.0) ---
|
| 117 |
+
|
| 118 |
+
def get_cve_dataframe(year: int) -> pd.DataFrame:
|
| 119 |
+
"""
|
| 120 |
+
Fetches, parses, and caches CVE data for a specific year from the NVD API 2.0.
|
| 121 |
+
Returns a pandas DataFrame with thread-safe caching.
|
| 122 |
+
"""
|
| 123 |
+
if not validate_year(year):
|
| 124 |
+
raise gr.Error(f"Invalid year: {year}. Please select a year between {MIN_YEAR} and {MAX_YEAR}.")
|
| 125 |
+
|
| 126 |
+
# Clean cache before checking
|
| 127 |
+
clean_cache()
|
| 128 |
+
|
| 129 |
+
with CACHE_LOCK:
|
| 130 |
+
if year in DATAFRAME_CACHE:
|
| 131 |
+
logger.info(f"Cache hit for year {year}.")
|
| 132 |
+
DATAFRAME_CACHE.move_to_end(year) # Mark as recently used
|
| 133 |
+
return DATAFRAME_CACHE[year][0].copy() # Return a copy to prevent mutations
|
| 134 |
+
|
| 135 |
+
logger.info(f"Cache miss. Fetching NVD data for year {year} from API v2.0.")
|
| 136 |
+
|
| 137 |
+
# Define date range for the selected year
|
| 138 |
+
start_date = datetime(year, 1, 1, 0, 0, 0).isoformat()
|
| 139 |
+
end_date = datetime(year + 1, 1, 1, 0, 0, 0).isoformat()
|
| 140 |
+
|
| 141 |
+
all_vulnerabilities = []
|
| 142 |
+
start_index = 0
|
| 143 |
+
|
| 144 |
+
try:
|
| 145 |
+
while True:
|
| 146 |
+
params = {
|
| 147 |
+
'pubStartDate': start_date,
|
| 148 |
+
'pubEndDate': end_date,
|
| 149 |
+
'resultsPerPage': RESULTS_PER_PAGE,
|
| 150 |
+
'startIndex': start_index
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
logger.info(f"Requesting CVEs from index {start_index}...")
|
| 154 |
+
response = SESSION.get(NVD_API_V2_URL, params=params, timeout=60)
|
| 155 |
+
response.raise_for_status()
|
| 156 |
+
|
| 157 |
+
data = response.json()
|
| 158 |
+
vulnerabilities = data.get("vulnerabilities", [])
|
| 159 |
+
all_vulnerabilities.extend(vulnerabilities)
|
| 160 |
+
|
| 161 |
+
total_results = data.get("totalResults", 0)
|
| 162 |
+
start_index += len(vulnerabilities)
|
| 163 |
+
|
| 164 |
+
if start_index >= total_results:
|
| 165 |
+
break
|
| 166 |
+
|
| 167 |
+
# --- Respect NVD rate limits ---
|
| 168 |
+
# Sleep for 6 seconds with API key, 10 without, to be safe
|
| 169 |
+
time.sleep(6 if NVD_API_KEY else 10)
|
| 170 |
+
|
| 171 |
+
if not all_vulnerabilities:
|
| 172 |
+
logger.warning(f"No CVE data found for year {year}")
|
| 173 |
+
raise gr.Error(f"No CVE data available for year {year}.")
|
| 174 |
+
|
| 175 |
+
df = parse_cve_items(all_vulnerabilities)
|
| 176 |
+
|
| 177 |
+
with CACHE_LOCK:
|
| 178 |
+
if len(DATAFRAME_CACHE) >= CACHE_MAX_SIZE:
|
| 179 |
+
DATAFRAME_CACHE.popitem(last=False)
|
| 180 |
+
DATAFRAME_CACHE[year] = (df, time.time())
|
| 181 |
+
|
| 182 |
+
return df.copy()
|
| 183 |
+
|
| 184 |
+
except requests.exceptions.Timeout:
|
| 185 |
+
logger.error(f"Timeout while fetching data for {year}")
|
| 186 |
+
raise gr.Error("Request timed out. The NVD API might be busy. Please try again.")
|
| 187 |
+
except requests.exceptions.HTTPError as e:
|
| 188 |
+
logger.error(f"HTTP Error for {year}: {e}")
|
| 189 |
+
raise gr.Error(f"Failed to fetch data for {year}. HTTP Error: {e.response.status_code}")
|
| 190 |
+
except json.JSONDecodeError as e:
|
| 191 |
+
logger.error(f"Failed to parse JSON for {year}: {e}")
|
| 192 |
+
raise gr.Error(f"Data for {year} is corrupted or invalid.")
|
| 193 |
+
except Exception as e:
|
| 194 |
+
logger.error(f"Unexpected error processing feed for {year}: {e}", exc_info=True)
|
| 195 |
+
raise gr.Error(f"An unexpected error occurred: {str(e)}")
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def parse_cve_items(vulnerabilities: list) -> pd.DataFrame:
|
| 199 |
+
"""
|
| 200 |
+
Extracts vulnerability details from the NVD API v2.0 JSON data.
|
| 201 |
+
"""
|
| 202 |
+
rows = []
|
| 203 |
+
|
| 204 |
+
for item in vulnerabilities:
|
| 205 |
+
cve_data = item.get("cve", {})
|
| 206 |
+
if not cve_data:
|
| 207 |
+
continue
|
| 208 |
+
|
| 209 |
+
cve_id = cve_data.get("id", "N/A")
|
| 210 |
+
|
| 211 |
+
# Get English description
|
| 212 |
+
description = "No description available"
|
| 213 |
+
for desc in cve_data.get("descriptions", []):
|
| 214 |
+
if desc.get("lang") == "en":
|
| 215 |
+
description = desc.get("value", description)
|
| 216 |
+
break
|
| 217 |
+
|
| 218 |
+
published = cve_data.get("published", "N/A")
|
| 219 |
+
|
| 220 |
+
# --- REFACTORED: Extract CVSS metrics, prioritizing v3.1 -> v3.0 -> v2 ---
|
| 221 |
+
base_score, severity, attack_vector = None, "N/A", "N/A"
|
| 222 |
+
metrics = cve_data.get("metrics", {})
|
| 223 |
+
|
| 224 |
+
if "cvssMetricV31" in metrics:
|
| 225 |
+
metric_data = metrics["cvssMetricV31"][0].get("cvssData", {})
|
| 226 |
+
base_score = metric_data.get("baseScore")
|
| 227 |
+
severity = metric_data.get("baseSeverity", "N/A")
|
| 228 |
+
attack_vector = metric_data.get("attackVector", "N/A")
|
| 229 |
+
elif "cvssMetricV30" in metrics:
|
| 230 |
+
metric_data = metrics["cvssMetricV30"][0].get("cvssData", {})
|
| 231 |
+
base_score = metric_data.get("baseScore")
|
| 232 |
+
severity = metric_data.get("baseSeverity", "N/A")
|
| 233 |
+
attack_vector = metric_data.get("attackVector", "N/A")
|
| 234 |
+
elif "cvssMetricV2" in metrics:
|
| 235 |
+
metric_data = metrics["cvssMetricV2"][0]
|
| 236 |
+
base_score = metric_data.get("cvssData", {}).get("baseScore")
|
| 237 |
+
severity = metric_data.get("baseSeverity", "N/A")
|
| 238 |
+
attack_vector = metric_data.get("accessVector", "N/A") # Note the different key for V2
|
| 239 |
+
|
| 240 |
+
# Extract CWE IDs
|
| 241 |
+
cwe_ids = []
|
| 242 |
+
for weakness in cve_data.get("weaknesses", []):
|
| 243 |
+
for desc in weakness.get("description", []):
|
| 244 |
+
if desc.get("lang") == "en":
|
| 245 |
+
cwe_id = desc.get("value")
|
| 246 |
+
if cwe_id and cwe_id.startswith("CWE-"):
|
| 247 |
+
cwe_ids.append(cwe_id)
|
| 248 |
+
|
| 249 |
+
rows.append({
|
| 250 |
+
"CVE_ID": cve_id,
|
| 251 |
+
"Description": description,
|
| 252 |
+
"Published": published[:10] if published else "N/A",
|
| 253 |
+
"Base_Score": base_score,
|
| 254 |
+
"Severity": severity.upper() if severity else "N/A",
|
| 255 |
+
"Attack_Vector": attack_vector.upper() if attack_vector else "N/A",
|
| 256 |
+
"CWE_IDs": ", ".join(cwe_ids) if cwe_ids else "N/A"
|
| 257 |
+
})
|
| 258 |
+
|
| 259 |
+
if not rows:
|
| 260 |
+
logger.warning("No valid CVE items could be parsed")
|
| 261 |
+
return pd.DataFrame()
|
| 262 |
+
|
| 263 |
+
df = pd.DataFrame(rows)
|
| 264 |
+
df["Base_Score"] = pd.to_numeric(df["Base_Score"], errors='coerce')
|
| 265 |
+
df = df.sort_values("Published", ascending=False, na_position='last').reset_index(drop=True)
|
| 266 |
+
|
| 267 |
+
return df
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
# --- LLM Integration ---
|
| 271 |
+
|
| 272 |
+
def generate_tailored_summary(cve_description: str, audience: str, hf_token: str) -> str:
|
| 273 |
+
"""
|
| 274 |
+
Generates a tailored CVE summary using the Hugging Face Inference API.
|
| 275 |
+
"""
|
| 276 |
+
if not hf_token:
|
| 277 |
+
return "β οΈ Hugging Face API token is not configured. Please set the HF_TOKEN environment variable."
|
| 278 |
+
if not cve_description or cve_description == "":
|
| 279 |
+
return "Please select a CVE from the table first."
|
| 280 |
+
if audience not in AUDIENCE_PROFILES:
|
| 281 |
+
return "Invalid audience selected."
|
| 282 |
+
|
| 283 |
+
api_url = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
| 284 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
| 285 |
+
profile = AUDIENCE_PROFILES[audience]
|
| 286 |
+
|
| 287 |
+
prompt = f"""<s>[INST] You are an expert cybersecurity analyst. Your task is to rewrite the following technical CVE description into a concise, actionable summary for a specific professional audience.
|
| 288 |
+
|
| 289 |
+
**Target Audience:** {audience}
|
| 290 |
+
- **Focus:** {profile.get('focus', 'N/A')}
|
| 291 |
+
- **Key Priorities:** {', '.join(profile.get('priorities', []))}
|
| 292 |
+
|
| 293 |
+
**Original CVE Description:**
|
| 294 |
+
---
|
| 295 |
+
{cve_description}
|
| 296 |
+
---
|
| 297 |
+
|
| 298 |
+
Provide a clear, concise summary (max 200 words) in a {profile.get('tone', 'professional')} tone, focusing on what matters most to this audience. Include actionable insights and recommendations. [/INST]"""
|
| 299 |
+
|
| 300 |
+
payload = {
|
| 301 |
+
"inputs": prompt,
|
| 302 |
+
"parameters": {
|
| 303 |
+
"max_new_tokens": 256,
|
| 304 |
+
"temperature": 0.7,
|
| 305 |
+
"top_p": 0.95,
|
| 306 |
+
"return_full_text": False
|
| 307 |
+
}
|
| 308 |
+
}
|
| 309 |
+
|
| 310 |
+
try:
|
| 311 |
+
response = SESSION.post(api_url, headers=headers, json=payload, timeout=60)
|
| 312 |
+
|
| 313 |
+
if response.status_code == 503:
|
| 314 |
+
return "β³ The model is currently loading. Please try again in a few moments."
|
| 315 |
+
elif response.status_code == 401:
|
| 316 |
+
return "β Invalid API token. Please check your Hugging Face token."
|
| 317 |
+
elif response.status_code != 200:
|
| 318 |
+
error_data = response.json()
|
| 319 |
+
error_message = error_data.get("error", "Unknown error")
|
| 320 |
+
logger.error(f"Inference API Error ({response.status_code}): {error_message}")
|
| 321 |
+
return f"β οΈ API Error: {error_message}"
|
| 322 |
+
|
| 323 |
+
result = response.json()
|
| 324 |
+
if isinstance(result, list) and len(result) > 0:
|
| 325 |
+
generated_text = result[0].get('generated_text', '').strip()
|
| 326 |
+
if generated_text:
|
| 327 |
+
return f"### Tailored Summary for {audience}\n\n{generated_text}"
|
| 328 |
+
else:
|
| 329 |
+
return "β οΈ The model returned an empty response. Please try again."
|
| 330 |
+
else:
|
| 331 |
+
return "β οΈ Unexpected response format from the API."
|
| 332 |
+
except requests.exceptions.Timeout:
|
| 333 |
+
logger.error("Timeout while calling Inference API")
|
| 334 |
+
return "β±οΈ Request timed out. The model might be overloaded. Please try again."
|
| 335 |
+
except Exception as e:
|
| 336 |
+
logger.error(f"Unexpected error in generate_tailored_summary: {e}")
|
| 337 |
+
return f"β An unexpected error occurred: {str(e)}"
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
# --- Analysis and Visualization ---
|
| 341 |
+
|
| 342 |
+
def analyze_and_visualize(
|
| 343 |
+
df: Optional[pd.DataFrame],
|
| 344 |
+
severity: str,
|
| 345 |
+
vector: str,
|
| 346 |
+
search: str
|
| 347 |
+
) -> Tuple[pd.DataFrame, Optional[px.bar], Optional[px.line], str]:
|
| 348 |
+
"""
|
| 349 |
+
Filters the main DataFrame and generates all outputs.
|
| 350 |
+
"""
|
| 351 |
+
if df is None or df.empty:
|
| 352 |
+
empty_df = pd.DataFrame(columns=["CVE_ID", "Severity", "Base_Score", "Description"])
|
| 353 |
+
return empty_df, None, None, "### No Data Loaded\n\nPlease select a year to load CVE data."
|
| 354 |
+
|
| 355 |
+
try:
|
| 356 |
+
filtered_df = df.copy()
|
| 357 |
+
|
| 358 |
+
# Apply filters
|
| 359 |
+
if severity and severity != "All":
|
| 360 |
+
filtered_df = filtered_df[filtered_df["Severity"] == severity]
|
| 361 |
+
if vector and vector != "All":
|
| 362 |
+
filtered_df = filtered_df[filtered_df["Attack_Vector"] == vector]
|
| 363 |
+
if search and search.strip():
|
| 364 |
+
search_term = search.strip()
|
| 365 |
+
masks = [
|
| 366 |
+
filtered_df[col].str.contains(search_term, case=False, na=False)
|
| 367 |
+
for col in ["CVE_ID", "Description", "CWE_IDs"] if col in filtered_df.columns
|
| 368 |
+
]
|
| 369 |
+
if masks:
|
| 370 |
+
combined_mask = pd.concat(masks, axis=1).any(axis=1)
|
| 371 |
+
filtered_df = filtered_df[combined_mask]
|
| 372 |
+
|
| 373 |
+
# Create outputs
|
| 374 |
+
severity_chart = create_severity_chart(filtered_df)
|
| 375 |
+
timeline_chart = create_timeline_chart(filtered_df)
|
| 376 |
+
summary_text = create_summary_text(filtered_df)
|
| 377 |
+
|
| 378 |
+
display_columns = ["CVE_ID", "Severity", "Base_Score", "Description"]
|
| 379 |
+
display_df = filtered_df[[col for col in display_columns if col in filtered_df.columns]]
|
| 380 |
+
|
| 381 |
+
return display_df, severity_chart, timeline_chart, summary_text
|
| 382 |
+
except Exception as e:
|
| 383 |
+
logger.error(f"Error in analyze_and_visualize: {e}", exc_info=True)
|
| 384 |
+
empty_df = pd.DataFrame(columns=["CVE_ID", "Severity", "Base_Score", "Description"])
|
| 385 |
+
return empty_df, None, None, f"### Error\n\nAn error occurred while filtering data: {str(e)}"
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
def create_severity_chart(df: pd.DataFrame) -> Optional[px.bar]:
|
| 389 |
+
"""Creates a bar chart for CVE severity distribution."""
|
| 390 |
+
if df.empty or "Severity" not in df.columns:
|
| 391 |
+
return None
|
| 392 |
+
try:
|
| 393 |
+
order = ["CRITICAL", "HIGH", "MEDIUM", "LOW", "N/A"]
|
| 394 |
+
counts = df["Severity"].value_counts().reindex(order, fill_value=0)
|
| 395 |
+
color_map = {"CRITICAL": "#8B0000", "HIGH": "#FF4500", "MEDIUM": "#FFA500", "LOW": "#FFD700", "N/A": "#D3D3D3"}
|
| 396 |
+
fig = px.bar(
|
| 397 |
+
x=counts.index, y=counts.values,
|
| 398 |
+
labels={"x": "Severity Level", "y": "Number of CVEs"},
|
| 399 |
+
title="CVE Severity Distribution",
|
| 400 |
+
color=counts.index, color_discrete_map=color_map, text=counts.values
|
| 401 |
+
)
|
| 402 |
+
fig.update_traces(texttemplate='%{text}', textposition='outside')
|
| 403 |
+
fig.update_layout(showlegend=False, xaxis={'categoryorder': 'array', 'categoryarray': order})
|
| 404 |
+
return fig
|
| 405 |
+
except Exception as e:
|
| 406 |
+
logger.error(f"Error creating severity chart: {e}")
|
| 407 |
+
return None
|
| 408 |
+
|
| 409 |
+
def create_timeline_chart(df: pd.DataFrame) -> Optional[px.line]:
|
| 410 |
+
"""Creates a line chart showing CVE publications over time."""
|
| 411 |
+
if df.empty or 'Published' not in df.columns:
|
| 412 |
+
return None
|
| 413 |
+
try:
|
| 414 |
+
df_copy = df.copy()
|
| 415 |
+
df_copy["Date"] = pd.to_datetime(df_copy["Published"], errors='coerce')
|
| 416 |
+
df_copy.dropna(subset=["Date"], inplace=True)
|
| 417 |
+
if df_copy.empty: return None
|
| 418 |
+
|
| 419 |
+
counts = df_copy.set_index("Date").resample('M').size()
|
| 420 |
+
if counts.empty: return None
|
| 421 |
+
|
| 422 |
+
fig = px.line(
|
| 423 |
+
x=counts.index, y=counts.values,
|
| 424 |
+
labels={"x": "Month", "y": "Number of CVEs"},
|
| 425 |
+
title="CVE Publications Timeline", markers=True
|
| 426 |
+
)
|
| 427 |
+
return fig
|
| 428 |
+
except Exception as e:
|
| 429 |
+
logger.error(f"Error creating timeline chart: {e}")
|
| 430 |
+
return None
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
def create_summary_text(df: pd.DataFrame) -> str:
|
| 434 |
+
"""Generates a markdown string with key statistics."""
|
| 435 |
+
if df.empty:
|
| 436 |
+
return "### No Results\n\nNo CVEs match your current filter criteria."
|
| 437 |
+
try:
|
| 438 |
+
total_cves = len(df)
|
| 439 |
+
sev_counts = df['Severity'].value_counts() if 'Severity' in df.columns else {}
|
| 440 |
+
scores = df['Base_Score'].dropna()
|
| 441 |
+
avg_score = f"{scores.mean():.2f}" if not scores.empty else "N/A"
|
| 442 |
+
max_score = f"{scores.max():.1f}" if not scores.empty else "N/A"
|
| 443 |
+
|
| 444 |
+
return "\n".join([
|
| 445 |
+
f"### Summary Statistics",
|
| 446 |
+
f"- **Total CVEs Found:** {total_cves:,}",
|
| 447 |
+
f"- **Critical:** {sev_counts.get('CRITICAL', 0):,}",
|
| 448 |
+
f"- **High:** {sev_counts.get('HIGH', 0):,}",
|
| 449 |
+
f"- **Medium:** {sev_counts.get('MEDIUM', 0):,}",
|
| 450 |
+
f"- **Low:** {sev_counts.get('LOW', 0):,}",
|
| 451 |
+
f"- **Average Base Score:** {avg_score}",
|
| 452 |
+
f"- **Maximum Base Score:** {max_score}"
|
| 453 |
+
])
|
| 454 |
+
except Exception as e:
|
| 455 |
+
logger.error(f"Error creating summary text: {e}")
|
| 456 |
+
return f"### Error\n\nCould not generate summary: {str(e)}"
|
| 457 |
+
|
| 458 |
+
# --- Gradio UI and Event Logic ---
|
| 459 |
+
|
| 460 |
+
def create_dashboard():
|
| 461 |
+
"""Builds the entire Gradio interface."""
|
| 462 |
+
|
| 463 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="CVE Dashboard - NVD API v2.0 Analyzer") as dashboard:
|
| 464 |
+
|
| 465 |
+
df_state = gr.State(value=None)
|
| 466 |
+
selected_cve_description = gr.State(value="")
|
| 467 |
+
hf_token_state = gr.State(value=os.environ.get("HF_TOKEN", ""))
|
| 468 |
+
|
| 469 |
+
gr.Markdown(
|
| 470 |
+
"""
|
| 471 |
+
# π‘οΈ CVE Dashboard: NVD API v2.0 Analyzer
|
| 472 |
+
Explore Common Vulnerabilities and Exposures (CVE) data from the National Vulnerability Database, fetched live using the NVD API 2.0.
|
| 473 |
+
|
| 474 |
+
Select a year to load CVE data, apply filters, and leverage AI to generate tailored summaries for different professional audiences.
|
| 475 |
+
"""
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
with gr.Row():
|
| 479 |
+
with gr.Column(scale=1):
|
| 480 |
+
gr.Markdown("### ποΈ Controls")
|
| 481 |
+
year_dd = gr.Dropdown(
|
| 482 |
+
choices=list(range(MIN_YEAR, MAX_YEAR + 1))[::-1], value=CURRENT_YEAR,
|
| 483 |
+
label="1. Select Year", info="Choose a year to load CVE data"
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
gr.Markdown("### π Filters")
|
| 487 |
+
severity_dd = gr.Dropdown(
|
| 488 |
+
choices=["All", "CRITICAL", "HIGH", "MEDIUM", "LOW"], value="All",
|
| 489 |
+
label="2. Severity Level", info="Filter by CVSS severity rating"
|
| 490 |
+
)
|
| 491 |
+
vector_dd = gr.Dropdown(
|
| 492 |
+
choices=["All", "NETWORK", "ADJACENT_NETWORK", "LOCAL", "PHYSICAL"], value="All",
|
| 493 |
+
label="3. Attack Vector", info="Filter by attack vector type"
|
| 494 |
+
)
|
| 495 |
+
search_tb = gr.Textbox(
|
| 496 |
+
label="4. Search", placeholder="e.g., 'Log4j', 'SQL injection', 'CWE-89'...",
|
| 497 |
+
info="Search in CVE IDs, descriptions, and CWE IDs"
|
| 498 |
+
)
|
| 499 |
+
filter_btn = gr.Button("π Apply Filters", variant="primary", size="lg")
|
| 500 |
+
|
| 501 |
+
with gr.Column(scale=3):
|
| 502 |
+
summary_out = gr.Markdown(value="### Loading...")
|
| 503 |
+
with gr.Tabs():
|
| 504 |
+
with gr.TabItem("π Data Table"):
|
| 505 |
+
table_out = gr.DataFrame(
|
| 506 |
+
headers=["CVE_ID", "Severity", "Base_Score", "Description"],
|
| 507 |
+
wrap=True, max_rows=20, interactive=True, label="CVE Data"
|
| 508 |
+
)
|
| 509 |
+
with gr.TabItem("π Severity Analysis"):
|
| 510 |
+
plot_severity_out = gr.Plot(label="Severity Distribution")
|
| 511 |
+
with gr.TabItem("π Timeline Analysis"):
|
| 512 |
+
plot_timeline_out = gr.Plot(label="Publication Timeline")
|
| 513 |
+
|
| 514 |
+
with gr.Accordion(
|
| 515 |
+
"π€ AI-Powered CVE Analysis (Select a CVE from the table)",
|
| 516 |
+
open=False, visible=False
|
| 517 |
+
) as llm_accordion:
|
| 518 |
+
with gr.Row():
|
| 519 |
+
with gr.Column(scale=2):
|
| 520 |
+
original_desc_out = gr.Textbox(
|
| 521 |
+
label="Original CVE Description", lines=6, interactive=False, show_copy_button=True
|
| 522 |
+
)
|
| 523 |
+
with gr.Column(scale=1):
|
| 524 |
+
audience_dd = gr.Dropdown(
|
| 525 |
+
choices=list(AUDIENCE_PROFILES.keys()), value="Cybersecurity Professional",
|
| 526 |
+
label="Target Audience", info="Select your role for a tailored summary"
|
| 527 |
+
)
|
| 528 |
+
generate_btn = gr.Button("β¨ Generate Tailored Summary", variant="primary")
|
| 529 |
+
summary_llm_out = gr.Markdown(value="*Select an audience and click 'Generate'...*")
|
| 530 |
+
|
| 531 |
+
# --- Event Handlers ---
|
| 532 |
+
|
| 533 |
+
def on_year_change(year):
|
| 534 |
+
"""Handle year selection change."""
|
| 535 |
+
try:
|
| 536 |
+
if year is None:
|
| 537 |
+
return None, pd.DataFrame(), None, None, "### Please select a year"
|
| 538 |
+
df = get_cve_dataframe(int(year))
|
| 539 |
+
return df, *analyze_and_visualize(df, "All", "All", "")
|
| 540 |
+
except Exception as e:
|
| 541 |
+
logger.error(f"Error in on_year_change: {e}")
|
| 542 |
+
return None, pd.DataFrame(), None, None, f"### Error\n\n{str(e)}"
|
| 543 |
+
|
| 544 |
+
# --- Correct CVE selection logic ---
|
| 545 |
+
def on_select_cve(full_df: pd.DataFrame, evt: gr.SelectData):
|
| 546 |
+
"""Handle CVE row selection safely."""
|
| 547 |
+
try:
|
| 548 |
+
if full_df is None or evt.value is None:
|
| 549 |
+
return "", "", gr.update(visible=False)
|
| 550 |
+
|
| 551 |
+
# Get the CVE_ID from the selected row's first column value
|
| 552 |
+
selected_cve_id = evt.value
|
| 553 |
+
|
| 554 |
+
# Look up the full description in the master dataframe
|
| 555 |
+
cve_record = full_df[full_df["CVE_ID"] == selected_cve_id]
|
| 556 |
+
if cve_record.empty:
|
| 557 |
+
return "", "Could not find details for the selected CVE.", gr.update(visible=False)
|
| 558 |
+
|
| 559 |
+
full_description = cve_record.iloc[0]["Description"]
|
| 560 |
+
return full_description, full_description, gr.update(visible=True)
|
| 561 |
+
except Exception as e:
|
| 562 |
+
logger.error(f"Error in on_select_cve: {e}", exc_info=True)
|
| 563 |
+
return "", "Error loading CVE details", gr.update(visible=False)
|
| 564 |
+
|
| 565 |
+
# Wire up events
|
| 566 |
+
analysis_outputs = [table_out, plot_severity_out, plot_timeline_out, summary_out]
|
| 567 |
+
filter_inputs = [df_state, severity_dd, vector_dd, search_tb]
|
| 568 |
+
|
| 569 |
+
year_dd.change(
|
| 570 |
+
fn=on_year_change, inputs=[year_dd],
|
| 571 |
+
outputs=[df_state, *analysis_outputs], show_progress="full"
|
| 572 |
+
)
|
| 573 |
+
dashboard.load(
|
| 574 |
+
fn=on_year_change, inputs=[year_dd],
|
| 575 |
+
outputs=[df_state, *analysis_outputs], show_progress="full"
|
| 576 |
+
)
|
| 577 |
+
|
| 578 |
+
filter_btn.click(
|
| 579 |
+
fn=analyze_and_visualize, inputs=filter_inputs, outputs=analysis_outputs
|
| 580 |
+
)
|
| 581 |
+
search_tb.submit(
|
| 582 |
+
fn=analyze_and_visualize, inputs=filter_inputs, outputs=analysis_outputs
|
| 583 |
+
)
|
| 584 |
+
for control in [severity_dd, vector_dd]:
|
| 585 |
+
control.change(
|
| 586 |
+
fn=analyze_and_visualize, inputs=filter_inputs, outputs=analysis_outputs
|
| 587 |
+
)
|
| 588 |
+
|
| 589 |
+
table_out.select(
|
| 590 |
+
fn=on_select_cve,
|
| 591 |
+
inputs=[df_state],
|
| 592 |
+
outputs=[selected_cve_description, original_desc_out, llm_accordion],
|
| 593 |
+
# Use the cell value (CVE_ID) as the event data
|
| 594 |
+
_js="((df, evt) => { return [df, evt.value] })",
|
| 595 |
+
show_progress="hidden"
|
| 596 |
+
)
|
| 597 |
+
|
| 598 |
+
generate_btn.click(
|
| 599 |
+
fn=generate_tailored_summary,
|
| 600 |
+
inputs=[selected_cve_description, audience_dd, hf_token_state],
|
| 601 |
+
outputs=[summary_llm_out]
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
return dashboard
|
| 605 |
+
|
| 606 |
+
if __name__ == "__main__":
|
| 607 |
+
try:
|
| 608 |
+
if not os.environ.get("HF_TOKEN"):
|
| 609 |
+
logger.warning("HF_TOKEN not found. AI features will be limited.")
|
| 610 |
+
|
| 611 |
+
cve_dashboard = create_dashboard()
|
| 612 |
+
cve_dashboard.launch(server_name="0.0.0.0", show_error=True)
|
| 613 |
+
except Exception as e:
|
| 614 |
+
logger.error(f"Failed to launch application: {e}", exc_info=True)
|
| 615 |
+
raise
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
pandas
|
| 3 |
+
plotly
|
| 4 |
+
requests
|
| 5 |
+
urllib3
|