Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline | |
| # loarding pipeline | |
| sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") | |
| ner_tagger = pipeline("ner", model="dslim/bert-base-NER", grouped_entities=True) | |
| st.set_page_config(page_title="Customer Support Analyzer", layout="centered") | |
| st.title("📞 AI Customer service Dialogue Analysis") | |
| # Customer type | |
| user_input = st.text_area("Please enter the question or conversation:", height=150) | |
| if st.button("Analyse"): | |
| if user_input.strip() == "": | |
| st.warning("Please enter content") | |
| else: | |
| with st.spinner("Analysing..."): | |
| # Emotion | |
| sentiment_result = sentiment_analyzer(user_input)[0] | |
| st.subheader("📌 Sentiment analysis results") | |
| st.write(f"**Emotional type**: {sentiment_result['label']}") | |
| st.write(f"**Confidence degree**: {sentiment_result['score']:.2f}") | |
| # Command | |
| ner_results = ner_tagger(user_input) | |
| extracted_entities = [ent['word'] for ent in ner_results if ent['score'] > 0.5] | |
| st.subheader("🔍Problem keyword recognition") | |
| if extracted_entities: | |
| st.write(", ".join(set(extracted_entities))) | |
| else: | |
| st.write("The specific problem keywords were not identified") | |