Upload train.py with huggingface_hub
Browse files
train.py
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Fine-tune Zephyr 7B on CyberSecurity Dataset Collection
|
| 4 |
+
Runs on Hugging Face Spaces infrastructure
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import torch
|
| 9 |
+
from datasets import load_dataset, concatenate_datasets
|
| 10 |
+
from transformers import (
|
| 11 |
+
AutoModelForCausalLM,
|
| 12 |
+
AutoTokenizer,
|
| 13 |
+
BitsAndBytesConfig,
|
| 14 |
+
TrainingArguments,
|
| 15 |
+
Trainer,
|
| 16 |
+
DataCollatorForLanguageModeling
|
| 17 |
+
)
|
| 18 |
+
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
| 19 |
+
|
| 20 |
+
# Configuration
|
| 21 |
+
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
| 22 |
+
OUTPUT_MODEL_NAME = "Jcalemcg/zephyr-7b-cybersecurity-finetuned"
|
| 23 |
+
|
| 24 |
+
# CyberSecurity datasets from thelordofweb collection
|
| 25 |
+
CYBERSECURITY_DATASETS = [
|
| 26 |
+
"AlicanKiraz0/All-CVE-Records-Training-Dataset",
|
| 27 |
+
"AlicanKiraz0/Cybersecurity-Dataset-v1",
|
| 28 |
+
"Bouquets/Cybersecurity-LLM-CVE",
|
| 29 |
+
"CyberNative/CyberSecurityEval",
|
| 30 |
+
"Mohabahmed03/Alpaca_Dataset_CyberSecurity_Smaller",
|
| 31 |
+
"CyberNative/github_cybersecurity_READMEs",
|
| 32 |
+
"AlicanKiraz0/Cybersecurity-Dataset-Heimdall-v1.1",
|
| 33 |
+
"jcordon5/cybersecurity-rules",
|
| 34 |
+
"Bouquets/DeepSeek-V3-Distill-Cybersecurity-en",
|
| 35 |
+
"Seerene/cybersecurity_dataset",
|
| 36 |
+
"ahmedds10/finetuning_alpaca_Cybersecurity",
|
| 37 |
+
"Tiamz/cybersecurity-instruction-dataset",
|
| 38 |
+
"OhWayTee/Cybersecurity-News_3",
|
| 39 |
+
"Trendyol/All-CVE-Chat-MultiTurn-1999-2025-Dataset",
|
| 40 |
+
"Vanessasml/cyber-reports-news-analysis-llama2-3k",
|
| 41 |
+
"Vanessasml/cybersecurity_32k_instruction_input_output",
|
| 42 |
+
"Vanessasml/enisa_cyber_news_dataset",
|
| 43 |
+
"Trendyol/Trendyol-Cybersecurity-Instruction-Tuning-Dataset"
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
def format_instruction(example):
|
| 47 |
+
"""Format examples into Zephyr chat format"""
|
| 48 |
+
if "instruction" in example and "output" in example:
|
| 49 |
+
prompt = f"<|user|>\n{example['instruction']}"
|
| 50 |
+
if example.get("input", "").strip():
|
| 51 |
+
prompt += f"\n{example['input']}"
|
| 52 |
+
prompt += f"</s>\n<|assistant|>\n{example['output']}</s>"
|
| 53 |
+
return {"text": prompt}
|
| 54 |
+
elif "question" in example and "answer" in example:
|
| 55 |
+
return {"text": f"<|user|>\n{example['question']}</s>\n<|assistant|>\n{example['answer']}</s>"}
|
| 56 |
+
elif "prompt" in example and "completion" in example:
|
| 57 |
+
return {"text": f"<|user|>\n{example['prompt']}</s>\n<|assistant|>\n{example['completion']}</s>"}
|
| 58 |
+
elif "text" in example:
|
| 59 |
+
return {"text": example["text"]}
|
| 60 |
+
elif "messages" in example:
|
| 61 |
+
formatted_text = ""
|
| 62 |
+
for msg in example["messages"]:
|
| 63 |
+
role = msg.get("role", "")
|
| 64 |
+
content = msg.get("content", "")
|
| 65 |
+
if role == "user":
|
| 66 |
+
formatted_text += f"<|user|>\n{content}</s>\n"
|
| 67 |
+
elif role == "assistant":
|
| 68 |
+
formatted_text += f"<|assistant|>\n{content}</s>\n"
|
| 69 |
+
return {"text": formatted_text}
|
| 70 |
+
return {"text": str(example)}
|
| 71 |
+
|
| 72 |
+
def load_datasets():
|
| 73 |
+
"""Load and prepare cybersecurity datasets"""
|
| 74 |
+
print("=" * 70)
|
| 75 |
+
print("LOADING CYBERSECURITY DATASETS")
|
| 76 |
+
print("=" * 70)
|
| 77 |
+
all_datasets = []
|
| 78 |
+
|
| 79 |
+
for dataset_name in CYBERSECURITY_DATASETS:
|
| 80 |
+
try:
|
| 81 |
+
print(f"\nLoading: {dataset_name}")
|
| 82 |
+
dataset = load_dataset(dataset_name, split="train", trust_remote_code=True)
|
| 83 |
+
formatted = dataset.map(
|
| 84 |
+
format_instruction,
|
| 85 |
+
remove_columns=dataset.column_names,
|
| 86 |
+
desc="Formatting"
|
| 87 |
+
)
|
| 88 |
+
if len(formatted) > 10000:
|
| 89 |
+
formatted = formatted.shuffle(seed=42).select(range(10000))
|
| 90 |
+
all_datasets.append(formatted)
|
| 91 |
+
print(f"β {len(formatted)} examples loaded")
|
| 92 |
+
except Exception as e:
|
| 93 |
+
print(f"β Failed: {e}")
|
| 94 |
+
|
| 95 |
+
combined = concatenate_datasets(all_datasets)
|
| 96 |
+
print(f"\n{'='*70}")
|
| 97 |
+
print(f"TOTAL DATASET SIZE: {len(combined):,} examples")
|
| 98 |
+
print(f"{'='*70}\n")
|
| 99 |
+
|
| 100 |
+
combined = combined.shuffle(seed=42)
|
| 101 |
+
return combined.train_test_split(test_size=0.05, seed=42)
|
| 102 |
+
|
| 103 |
+
def setup_model():
|
| 104 |
+
"""Setup model with QLoRA"""
|
| 105 |
+
print("Setting up Zephyr 7B with QLoRA...")
|
| 106 |
+
|
| 107 |
+
bnb_config = BitsAndBytesConfig(
|
| 108 |
+
load_in_4bit=True,
|
| 109 |
+
bnb_4bit_quant_type="nf4",
|
| 110 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 111 |
+
bnb_4bit_use_double_quant=True,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 115 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 116 |
+
tokenizer.padding_side = "right"
|
| 117 |
+
|
| 118 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 119 |
+
MODEL_NAME,
|
| 120 |
+
quantization_config=bnb_config,
|
| 121 |
+
device_map="auto",
|
| 122 |
+
trust_remote_code=True,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
model = prepare_model_for_kbit_training(model)
|
| 126 |
+
|
| 127 |
+
lora_config = LoraConfig(
|
| 128 |
+
r=16,
|
| 129 |
+
lora_alpha=32,
|
| 130 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
| 131 |
+
lora_dropout=0.05,
|
| 132 |
+
bias="none",
|
| 133 |
+
task_type="CAUSAL_LM"
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
model = get_peft_model(model, lora_config)
|
| 137 |
+
model.print_trainable_parameters()
|
| 138 |
+
|
| 139 |
+
return model, tokenizer
|
| 140 |
+
|
| 141 |
+
def main():
|
| 142 |
+
print("\n" + "=" * 70)
|
| 143 |
+
print("ZEPHYR 7B CYBERSECURITY FINE-TUNING")
|
| 144 |
+
print("=" * 70 + "\n")
|
| 145 |
+
|
| 146 |
+
# Load data
|
| 147 |
+
datasets = load_datasets()
|
| 148 |
+
train_data = datasets["train"]
|
| 149 |
+
eval_data = datasets["test"]
|
| 150 |
+
|
| 151 |
+
# Setup model
|
| 152 |
+
model, tokenizer = setup_model()
|
| 153 |
+
|
| 154 |
+
# Tokenize
|
| 155 |
+
print("\nTokenizing datasets...")
|
| 156 |
+
def tokenize(examples):
|
| 157 |
+
return tokenizer(examples["text"], truncation=True, max_length=2048, padding="max_length")
|
| 158 |
+
|
| 159 |
+
train_data = train_data.map(tokenize, batched=True, remove_columns=train_data.column_names)
|
| 160 |
+
eval_data = eval_data.map(tokenize, batched=True, remove_columns=eval_data.column_names)
|
| 161 |
+
|
| 162 |
+
# Training config
|
| 163 |
+
training_args = TrainingArguments(
|
| 164 |
+
output_dir="./output",
|
| 165 |
+
num_train_epochs=3,
|
| 166 |
+
per_device_train_batch_size=4,
|
| 167 |
+
per_device_eval_batch_size=4,
|
| 168 |
+
gradient_accumulation_steps=4,
|
| 169 |
+
learning_rate=2e-4,
|
| 170 |
+
fp16=True,
|
| 171 |
+
save_strategy="steps",
|
| 172 |
+
save_steps=500,
|
| 173 |
+
eval_strategy="steps",
|
| 174 |
+
eval_steps=500,
|
| 175 |
+
logging_steps=50,
|
| 176 |
+
warmup_steps=100,
|
| 177 |
+
lr_scheduler_type="cosine",
|
| 178 |
+
optim="paged_adamw_8bit",
|
| 179 |
+
save_total_limit=3,
|
| 180 |
+
load_best_model_at_end=True,
|
| 181 |
+
push_to_hub=True,
|
| 182 |
+
hub_model_id=OUTPUT_MODEL_NAME,
|
| 183 |
+
hub_strategy="every_save",
|
| 184 |
+
report_to="tensorboard",
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
# Train
|
| 188 |
+
trainer = Trainer(
|
| 189 |
+
model=model,
|
| 190 |
+
args=training_args,
|
| 191 |
+
train_dataset=train_data,
|
| 192 |
+
eval_dataset=eval_data,
|
| 193 |
+
data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False),
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
print("\n" + "=" * 70)
|
| 197 |
+
print("STARTING TRAINING")
|
| 198 |
+
print("=" * 70 + "\n")
|
| 199 |
+
|
| 200 |
+
trainer.train()
|
| 201 |
+
|
| 202 |
+
print("\nSaving model...")
|
| 203 |
+
trainer.save_model()
|
| 204 |
+
model.push_to_hub(OUTPUT_MODEL_NAME)
|
| 205 |
+
tokenizer.push_to_hub(OUTPUT_MODEL_NAME)
|
| 206 |
+
|
| 207 |
+
print("\n" + "=" * 70)
|
| 208 |
+
print("β TRAINING COMPLETE")
|
| 209 |
+
print(f"β Model: {OUTPUT_MODEL_NAME}")
|
| 210 |
+
print("=" * 70)
|
| 211 |
+
|
| 212 |
+
if __name__ == "__main__":
|
| 213 |
+
main()
|