from transformers import AutoModelForCausalLM, AutoTokenizer from sentence_transformers import SentenceTransformer from peft import PeftModel import faiss import torch import gradio as gr # Load models and index base_model_id = "rasyosef/phi-2-instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(base_model_id) device = "cuda" if torch.cuda.is_available() else "cpu" base_model = AutoModelForCausalLM.from_pretrained( base_model_id, torch_dtype=torch.float16 if device == "cuda" else torch.float32 ).to(device) peft_model = PeftModel.from_pretrained(base_model, "./results/checkpoint-165") peft_model.eval() embedder = SentenceTransformer("all-MiniLM-L6-v2") index = faiss.read_index("rag-corpus/rag-index.faiss") with open("rag-corpus/rag_docs.txt", "r", encoding="utf-8") as f: all_docs = f.read().split("\n---\n") def retrieve_context(query, k=3): query_embedding = embedder.encode([query]) D, I = index.search(query_embedding, k) return [all_docs[i] for i in I[0] if i < len(all_docs)] def generate_response(user_prompt): context_chunks = retrieve_context(user_prompt) context_text = "\n\n".join(context_chunks) prompt = f""" <|im_start|>system You are an expert AI assistant role-playing as Dylan Todd. Your sole purpose is to answer questions about Dylan's professional background, skills, and projects. **Your instructions are absolute:** 1. You MUST answer the user's question from Dylan Todd's perspective. 2. Your answers must be concise, professional, and direct. 3. End every single response with '<|im_end|>'. Failure to answer the question is not an option. Begin your response immediately as Dylan Todd. <|im_end|> <|im_start|>user Here is some context to help inform your answer, note that not all of it may be relevant to the question, but it is provided to help you answer: {context_text} Now answer this question directed to Dylan Todd: {user_prompt} <|im_end|> <|im_start|>Dylan Todd """ input_ids = tokenizer(prompt, return_tensors="pt").to(device) with torch.no_grad(): output_ids = peft_model.generate( input_ids=input_ids["input_ids"], attention_mask=input_ids["attention_mask"], repetition_penalty=1.1, do_sample=True, max_new_tokens=200, temperature=0.7, top_p=0.95, top_k=50, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.convert_tokens_to_ids("<|im_end|>") ) generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) if "Dylan Todd" in generated_text: generated_text = generated_text.split("Dylan Todd\n", 1)[-1].strip() for stop_token in ["<|im_end|>", "\n"]: if stop_token in generated_text: generated_text = generated_text.split(stop_token)[0].strip() break return generated_text demo = gr.Interface(fn=generate_response, inputs="text", outputs="text", title="Ask Dylan Todd", description="An AI assistant answering questions as Dylan Todd using custom fine-tuned + RAG model.") demo.launch()