import Predict import cv2 as cv import numpy as np import torch if __name__ == "__main__": input_ad_path = 'Demo/MUPI_1185x1750mm_v02.jpg' text_detection_model_path = 'EAST-Text-Detection/frozen_east_text_detection.pb' LDA_model_pth = 'LDA_Model_trained/lda_model_best_tot.model' training_ad_text_dictionary_path = 'LDA_Model_trained/object_word_dictionary' training_lang_preposition_path = 'LDA_Model_trained/dutch_preposition' # all_paths = ['Randomized_Dataset/Single_Page_Ads/ad'+str(i)+'.jpg' for i in range(37)] # all_paths = ['Randomized_Dataset/ads/'+str(i+1)+'ad.jpg' for i in range(24)] # all_paths = ['Randomized_Dataset/More_Backpage_Ads/Backpage_Imgs/ad'+str(i+1)+'.jpg' for i in range(123)] ed_indices = [1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,19,20,21,22,23] all_paths = [f'Randomized_Dataset/eds/{i}ed.jpg' for i in ed_indices] Features10 = {} # ad = cv.imread('Randomized_Dataset/Single_Page_Ads/1ad.jpg') # print(ad.shape) for i,input_ad_path in enumerate(all_paths): print(input_ad_path) ad = cv.imread(input_ad_path) ad = cv.cvtColor(ad, cv.COLOR_BGR2RGB) ad = ad[89:921,320:960,:] ad = cv.resize(ad, (640, 832)) surfaces = list(torch.load('Randomized_Dataset/Single_Page_Ads/DATA/surfaces')[i]) prod_group = torch.load('Randomized_Dataset/Single_Page_Ads/DATA/Prod_Cat')[i] ad_topic = torch.load('Randomized_Dataset/Single_Page_Ads/DATA/embs_single_page_ads')[i] ctpg_topic = torch.load('Randomized_Dataset/Single_Page_Ads/DATA/embs_single_page_ads')[i] # surfaces = list(torch.load('Randomized_Dataset/surfaces')[i]) # prod_group = torch.load('Randomized_Dataset/Prod_Cat')[i] # ad_topic = torch.load('Randomized_Dataset/embs_randomized.pt')[i] # ctpg_topic = torch.load('Randomized_Dataset/embs_randomized.pt')[i] # surfaces = list(torch.load('Randomized_Dataset/More_Backpage_Ads/DATA/surface_sizes_data')[i]) # prod_group = torch.load('Randomized_Dataset/More_Backpage_Ads/DATA/Prod_Cat')[i] # ad_topic = torch.load('Randomized_Dataset/More_Backpage_Ads/DATA/embs_backpage_ads')[i] # ctpg_topic = torch.load('Randomized_Dataset/More_Backpage_Ads/DATA/embs_backpage_ads')[i] Features = Predict.Ad_Gaze_Prediction(input_ad_path=ad, input_ctpg_path=None, ad_location=None, text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth, training_ad_text_dictionary_path=training_ad_text_dictionary_path, training_lang_preposition_path=training_lang_preposition_path, training_language='dutch', Ad_var=None, Ctpg_var=None, flag_full_page_ad=False, ad_embeddings=ad_topic, ctpg_embeddings=ctpg_topic, surface_sizes=surfaces, Product_Group=prod_group, obj_detection_model_pth=None, num_topic=20, Gaze_Time_Type='Ad',Ad_Features_Only=True, Info_printing=False) Features10[ed_indices[i]-1] = Features # torch.save(Features10, 'Randomized_Dataset/Single_Page_Ads/DATA/Features10.pt') # torch.save(Features10, 'Randomized_Dataset/More_Backpage_Ads/DATA/Features10.pt') torch.save(Features10, 'Randomized_Dataset/eds/DATA/Features10.pt') # ad = cv.imread(input_ad_path) # ad = cv.cvtColor(ad, cv.COLOR_BGR2RGB) # ad = cv.resize(ad, (640, 832)) # surfaces = list(np.load('surfaces.npy')) # prod_group = np.load('prod_group.npy') # ad_topic = torch.load('new_ad_topic.pt') # ctpg_topic = torch.load('new_ctxt_topic.pt') # Gaze = Predict.Ad_Gaze_Prediction(input_ad_path=ad, input_ctpg_path=None, ad_location=None, # text_detection_model_path=text_detection_model_path, LDA_model_pth=LDA_model_pth, # training_ad_text_dictionary_path=training_ad_text_dictionary_path, training_lang_preposition_path=training_lang_preposition_path, training_language='dutch', # ad_embeddings=ad_topic, ctpg_embeddings=ctpg_topic, # surface_sizes=surfaces, Product_Group=prod_group, # obj_detection_model_pth=None, num_topic=20, Gaze_Time_Type='BS')