!pip install -q transformers torch accelerate from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "distilgpt2" device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name).to(device) system_prompt = "You are ProTalk, a professional AI assistant. Answer politely, be witty, and remember the conversation context." chat_history = [] MAX_HISTORY = 6 # only keep last 6 messages to avoid repetition while True: user_input = input("User: ") if user_input.lower() == "exit": break chat_history.append(f"User: {user_input}") # keep only last MAX_HISTORY entries relevant_history = chat_history[-MAX_HISTORY:] prompt = system_prompt + "\n" + "\n".join(relevant_history) + "\nProTalk:" inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate( **inputs, max_new_tokens=100, do_sample=True, temperature=0.7, top_p=0.9, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # clean response to remove prompt echo response = response.replace(prompt, "").strip() print(f"ProTalk: {response}") chat_history.append(f"ProTalk: {response}")