Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGeneralized Differentiable RANSAC
We propose nabla-RANSAC, a generalized differentiable RANSAC that allows learning the entire randomized robust estimation pipeline. The proposed approach enables the use of relaxation techniques for estimating the gradients in the sampling distribution, which are then propagated through a differentiable solver. The trainable quality function marginalizes over the scores from all the models estimated within nabla-RANSAC to guide the network learning accurate and useful inlier probabilities or to train feature detection and matching networks. Our method directly maximizes the probability of drawing a good hypothesis, allowing us to learn better sampling distribution. We test nabla-RANSAC on a number of real-world scenarios on fundamental and essential matrix estimation, both outdoors and indoors, with handcrafted and learning-based features. It is superior to the state-of-the-art in terms of accuracy while running at a similar speed to its less accurate alternatives. The code and trained models are available at https://github.com/weitong8591/differentiable_ransac.
Quantum Relaxation for Solving Multiple Knapsack Problems
Combinatorial problems are a common challenge in business, requiring finding optimal solutions under specified constraints. While significant progress has been made with variational approaches such as QAOA, most problems addressed are unconstrained (such as Max-Cut). In this study, we investigate a hybrid quantum-classical method for constrained optimization problems, particularly those with knapsack constraints that occur frequently in financial and supply chain applications. Our proposed method relies firstly on relaxations to local quantum Hamiltonians, defined through commutative maps. Drawing inspiration from quantum random access code (QRAC) concepts, particularly Quantum Random Access Optimizer (QRAO), we explore QRAO's potential in solving large constrained optimization problems. We employ classical techniques like Linear Relaxation as a presolve mechanism to handle constraints and cope further with scalability. We compare our approach with QAOA and present the final results for a real-world procurement optimization problem: a significant sized multi-knapsack-constrained problem.
Comparative modeling studies of TSDC: investigation of Alpha-relaxation in Amorphous polymers
A model to investigate Thermally Stimulated Depolarization Current (TSDC) peak parameters using the dipole-dipole interaction concept is proposed by the author in this work. The proposed model describe the (TSDC) peak successfully since it gives a significant peak parameters (i.e. Activation energy (E) and the per-exponential factor (\tau_0) in addition to the dipole-dipole interaction strength parameter (di). Application of this model to determine the peak parameters of polyvinyl chloride(PVC) polymer is presented . The results show how the model fit the experimental thermal sampling data. Finally the results are compared to the well know techniques; the initial rise method (IR), the half width method (HW) in addition to the Cowell and Woods analysis.
JFR: An Efficient Jump Frontier Relaxation Strategy for Bellman-Ford
We propose JFR, a Bellman-Ford-based optimization framework leveraging frontier contraction and abstract multi-hop jump propagation to accelerate shortest-path computation while strictly preserving correctness. JFR achieves substantial reductions in relaxation operations, ranging from 25 to 99 percent, across sparse, dense, and negative-edge graphs, ensuring robust performance even under adversarial or highly connected topologies. On ultra-large graphs with up to N=20,000 nodes and 295 million edges, JFR maintains strong operational reductions and comparable or improved runtime relative to SPFA-SLF, demonstrating consistent robustness across graph size and density. Lower relaxation counts imply reduced memory-access overheads and computational effort; this normalized work reduction highlights JFR's suitability for scenarios requiring high throughput or energy-conscious operation. Future work focuses on integrating high-performance queue structures, adaptive frontier strategies, and cache-aware techniques to further reduce constant-factor overheads and fully realize JFR's practical runtime potential.
Tight Certification of Adversarially Trained Neural Networks via Nonconvex Low-Rank Semidefinite Relaxations
Adversarial training is well-known to produce high-quality neural network models that are empirically robust against adversarial perturbations. Nevertheless, once a model has been adversarially trained, one often desires a certification that the model is truly robust against all future attacks. Unfortunately, when faced with adversarially trained models, all existing approaches have significant trouble making certifications that are strong enough to be practically useful. Linear programming (LP) techniques in particular face a "convex relaxation barrier" that prevent them from making high-quality certifications, even after refinement with mixed-integer linear programming (MILP) and branch-and-bound (BnB) techniques. In this paper, we propose a nonconvex certification technique, based on a low-rank restriction of a semidefinite programming (SDP) relaxation. The nonconvex relaxation makes strong certifications comparable to much more expensive SDP methods, while optimizing over dramatically fewer variables comparable to much weaker LP methods. Despite nonconvexity, we show how off-the-shelf local optimization algorithms can be used to achieve and to certify global optimality in polynomial time. Our experiments find that the nonconvex relaxation almost completely closes the gap towards exact certification of adversarially trained models.
Fast Online Node Labeling for Very Large Graphs
This paper studies the online node classification problem under a transductive learning setting. Current methods either invert a graph kernel matrix with O(n^3) runtime and O(n^2) space complexity or sample a large volume of random spanning trees, thus are difficult to scale to large graphs. In this work, we propose an improvement based on the online relaxation technique introduced by a series of works (Rakhlin et al.,2012; Rakhlin and Sridharan, 2015; 2017). We first prove an effective regret O(n^{1+gamma}) when suitable parameterized graph kernels are chosen, then propose an approximate algorithm FastONL enjoying O(kn^{1+gamma}) regret based on this relaxation. The key of FastONL is a generalized local push method that effectively approximates inverse matrix columns and applies to a series of popular kernels. Furthermore, the per-prediction cost is O(vol({S})log 1/epsilon) locally dependent on the graph with linear memory cost. Experiments show that our scalable method enjoys a better tradeoff between local and global consistency.
Last Switch Dependent Bandits with Monotone Payoff Functions
In a recent work, Laforgue et al. introduce the model of last switch dependent (LSD) bandits, in an attempt to capture nonstationary phenomena induced by the interaction between the player and the environment. Examples include satiation, where consecutive plays of the same action lead to decreased performance, or deprivation, where the payoff of an action increases after an interval of inactivity. In this work, we take a step towards understanding the approximability of planning LSD bandits, namely, the (NP-hard) problem of computing an optimal arm-pulling strategy under complete knowledge of the model. In particular, we design the first efficient constant approximation algorithm for the problem and show that, under a natural monotonicity assumption on the payoffs, its approximation guarantee (almost) matches the state-of-the-art for the special and well-studied class of recharging bandits (also known as delay-dependent). In this attempt, we develop new tools and insights for this class of problems, including a novel higher-dimensional relaxation and the technique of mirroring the evolution of virtual states. We believe that these novel elements could potentially be used for approaching richer classes of action-induced nonstationary bandits (e.g., special instances of restless bandits). In the case where the model parameters are initially unknown, we develop an online learning adaptation of our algorithm for which we provide sublinear regret guarantees against its full-information counterpart.
Language Models for Music Medicine Generation
Music therapy has been shown in recent years to provide multiple health benefits related to emotional wellness. In turn, maintaining a healthy emotional state has proven to be effective for patients undergoing treatment, such as Parkinson's patients or patients suffering from stress and anxiety. We propose fine-tuning MusicGen, a music-generating transformer model, to create short musical clips that assist patients in transitioning from negative to desired emotional states. Using low-rank decomposition fine-tuning on the MTG-Jamendo Dataset with emotion tags, we generate 30-second clips that adhere to the iso principle, guiding patients through intermediate states in the valence-arousal circumplex. The generated music is evaluated using a music emotion recognition model to ensure alignment with intended emotions. By concatenating these clips, we produce a 15-minute "music medicine" resembling a music therapy session. Our approach is the first model to leverage Language Models to generate music medicine. Ultimately, the output is intended to be used as a temporary relief between music therapy sessions with a board-certified therapist.
PoseX: AI Defeats Physics Approaches on Protein-Ligand Cross Docking
Recently, significant progress has been made in protein-ligand docking, especially in modern deep learning methods, and some benchmarks were proposed, e.g., PoseBench, Plinder. However, these benchmarks suffer from less practical evaluation setups (e.g., blind docking, self docking), or heavy framework that involves training, raising challenges to assess docking methods efficiently. To fill this gap, we proposed PoseX, an open-source benchmark focusing on self-docking and cross-docking, to evaluate the algorithmic advances practically and comprehensively. Specifically, first, we curate a new evaluation dataset with 718 entries for self docking and 1,312 for cross docking; second, we incorporate 22 docking methods across three methodological categories, including (1) traditional physics-based methods (e.g., Schr\"odinger Glide), (2) AI docking methods (e.g., DiffDock), (3) AI co-folding methods (e.g., AlphaFold3); third, we design a relaxation method as post-processing to minimize conformation energy and refine binding pose; fourth, we released a leaderboard to rank submitted models in real time. We draw some key insights via extensive experiments: (1) AI-based approaches have already surpassed traditional physics-based approaches in overall docking accuracy (RMSD). The longstanding generalization issues that have plagued AI molecular docking have been significantly alleviated in the latest models. (2) The stereochemical deficiencies of AI-based approaches can be greatly alleviated with post-processing relaxation. Combining AI docking methods with the enhanced relaxation method achieves the best performance to date. (3) AI co-folding methods commonly face ligand chirality issues, which cannot be resolved by relaxation. The code, curated dataset and leaderboard are released at https://github.com/CataAI/PoseX.
Do Your Best and Get Enough Rest for Continual Learning
According to the forgetting curve theory, we can enhance memory retention by learning extensive data and taking adequate rest. This means that in order to effectively retain new knowledge, it is essential to learn it thoroughly and ensure sufficient rest so that our brain can memorize without forgetting. The main takeaway from this theory is that learning extensive data at once necessitates sufficient rest before learning the same data again. This aspect of human long-term memory retention can be effectively utilized to address the continual learning of neural networks. Retaining new knowledge for a long period of time without catastrophic forgetting is the critical problem of continual learning. Therefore, based on Ebbinghaus' theory, we introduce the view-batch model that adjusts the learning schedules to optimize the recall interval between retraining the same samples. The proposed view-batch model allows the network to get enough rest to learn extensive knowledge from the same samples with a recall interval of sufficient length. To this end, we specifically present two approaches: 1) a replay method that guarantees the optimal recall interval, and 2) a self-supervised learning that acquires extensive knowledge from a single training sample at a time. We empirically show that these approaches of our method are aligned with the forgetting curve theory, which can enhance long-term memory. In our experiments, we also demonstrate that our method significantly improves many state-of-the-art continual learning methods in various protocols and scenarios. We open-source this project at https://github.com/hankyul2/ViewBatchModel.
PainDiffusion: Learning to Express Pain
Accurate pain expression synthesis is essential for improving clinical training and human-robot interaction. Current Robotic Patient Simulators (RPSs) lack realistic pain facial expressions, limiting their effectiveness in medical training. In this work, we introduce PainDiffusion, a generative model that synthesizes naturalistic facial pain expressions. Unlike traditional heuristic or autoregressive methods, PainDiffusion operates in a continuous latent space, ensuring smoother and more natural facial motion while supporting indefinite-length generation via diffusion forcing. Our approach incorporates intrinsic characteristics such as pain expressiveness and emotion, allowing for personalized and controllable pain expression synthesis. We train and evaluate our model using the BioVid HeatPain Database. Additionally, we integrate PainDiffusion into a robotic system to assess its applicability in real-time rehabilitation exercises. Qualitative studies with clinicians reveal that PainDiffusion produces realistic pain expressions, with a 31.2% (std 4.8%) preference rate against ground-truth recordings. Our results suggest that PainDiffusion can serve as a viable alternative to real patients in clinical training and simulation, bridging the gap between synthetic and naturalistic pain expression. Code and videos are available at: https://damtien444.github.io/paindf/
Unprocessing Seven Years of Algorithmic Fairness
Seven years ago, researchers proposed a postprocessing method to equalize the error rates of a model across different demographic groups. The work launched hundreds of papers purporting to improve over the postprocessing baseline. We empirically evaluate these claims through thousands of model evaluations on several tabular datasets. We find that the fairness-accuracy Pareto frontier achieved by postprocessing contains all other methods we were feasibly able to evaluate. In doing so, we address two common methodological errors that have confounded previous observations. One relates to the comparison of methods with different unconstrained base models. The other concerns methods achieving different levels of constraint relaxation. At the heart of our study is a simple idea we call unprocessing that roughly corresponds to the inverse of postprocessing. Unprocessing allows for a direct comparison of methods using different underlying models and levels of relaxation.
The Effect of Person-Specific Biometrics in Improving Generic Stress Predictive Models
Because stress is subjective and is expressed differently from one person to another, generic stress prediction models (i.e., models that predict the stress of any person) perform crudely. Only person-specific ones (i.e., models that predict the stress of a preordained person) yield reliable predictions, but they are not adaptable and costly to deploy in real-world environments. For illustration, in an office environment, a stress monitoring system that uses person-specific models would require collecting new data and training a new model for every employee. Moreover, once deployed, the models would deteriorate and need expensive periodic upgrades because stress is dynamic and depends on unforeseeable factors. We propose a simple, yet practical and cost effective calibration technique that derives an accurate and personalized stress prediction model from physiological samples collected from a large population. We validate our approach on two stress datasets. The results show that our technique performs much better than a generic model. For instance, a generic model achieved only a 42.5% accuracy. However, with only 100 calibration samples, we raised its accuracy to 95.2% We also propose a blueprint for a stress monitoring system based on our strategy, and we debate its merits and limitation. Finally, we made public our source code and the relevant datasets to allow other researchers to replicate our findings.
On the Paradox of Certified Training
Certified defenses based on convex relaxations are an established technique for training provably robust models. The key component is the choice of relaxation, varying from simple intervals to tight polyhedra. Counterintuitively, loose interval-based training often leads to higher certified robustness than what can be achieved with tighter relaxations, which is a well-known but poorly understood paradox. While recent works introduced various improvements aiming to circumvent this issue in practice, the fundamental problem of training models with high certified robustness remains unsolved. In this work, we investigate the underlying reasons behind the paradox and identify two key properties of relaxations, beyond tightness, that impact certified training dynamics: continuity and sensitivity. Our extensive experimental evaluation with a number of popular convex relaxations provides strong evidence that these factors can explain the drop in certified robustness observed for tighter relaxations. We also systematically explore modifications of existing relaxations and discover that improving unfavorable properties is challenging, as such attempts often harm other properties, revealing a complex tradeoff. Our findings represent an important first step towards understanding the intricate optimization challenges involved in certified training.
Attention-Based LSTM for Psychological Stress Detection from Spoken Language Using Distant Supervision
We propose a Long Short-Term Memory (LSTM) with attention mechanism to classify psychological stress from self-conducted interview transcriptions. We apply distant supervision by automatically labeling tweets based on their hashtag content, which complements and expands the size of our corpus. This additional data is used to initialize the model parameters, and which it is fine-tuned using the interview data. This improves the model's robustness, especially by expanding the vocabulary size. The bidirectional LSTM model with attention is found to be the best model in terms of accuracy (74.1%) and f-score (74.3%). Furthermore, we show that distant supervision fine-tuning enhances the model's performance by 1.6% accuracy and 2.1% f-score. The attention mechanism helps the model to select informative words.
Decade of Natural Language Processing in Chronic Pain: A Systematic Review
In recent years, the intersection of Natural Language Processing (NLP) and public health has opened innovative pathways for investigating various domains, including chronic pain in textual datasets. Despite the promise of NLP in chronic pain, the literature is dispersed across various disciplines, and there is a need to consolidate existing knowledge, identify knowledge gaps in the literature, and inform future research directions in this emerging field. This review aims to investigate the state of the research on NLP-based interventions designed for chronic pain research. A search strategy was formulated and executed across PubMed, Web of Science, IEEE Xplore, Scopus, and ACL Anthology to find studies published in English between 2014 and 2024. After screening 132 papers, 26 studies were included in the final review. Key findings from this review underscore the significant potential of NLP techniques to address pressing challenges in chronic pain research. The past 10 years in this field have showcased the utilization of advanced methods (transformers like RoBERTa and BERT) achieving high-performance metrics (e.g., F1>0.8) in classification tasks, while unsupervised approaches like Latent Dirichlet Allocation (LDA) and k-means clustering have proven effective for exploratory analyses. Results also reveal persistent challenges such as limited dataset diversity, inadequate sample sizes, and insufficient representation of underrepresented populations. Future research studies should explore multimodal data validation systems, context-aware mechanistic modeling, and the development of standardized evaluation metrics to enhance reproducibility and equity in chronic pain research.
InterMind: A Doctor-Patient-Family Interactive Depression Assessment System Empowered by Large Language Models
Depression poses significant challenges to patients and healthcare organizations, necessitating efficient assessment methods. Existing paradigms typically focus on a patient-doctor way that overlooks multi-role interactions, such as family involvement in the evaluation and caregiving process. Moreover, current automatic depression detection (ADD) methods usually model depression detection as a classification or regression task, lacking interpretability for the decision-making process. To address these issues, we developed InterMind, a doctor-patient-family interactive depression assessment system empowered by large language models (LLMs). Our system enables patients and families to contribute descriptions, generates assistive diagnostic reports for doctors, and provides actionable insights, improving diagnostic precision and efficiency. To enhance LLMs' performance in psychological counseling and diagnostic interpretability, we integrate retrieval-augmented generation (RAG) and chain-of-thoughts (CoT) techniques for data augmentation, which mitigates the hallucination issue of LLMs in specific scenarios after instruction fine-tuning. Quantitative experiments and professional assessments by clinicians validate the effectiveness of our system.
