new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

How Many Van Goghs Does It Take to Van Gogh? Finding the Imitation Threshold

Text-to-image models are trained using large datasets collected by scraping image-text pairs from the internet. These datasets often include private, copyrighted, and licensed material. Training models on such datasets enables them to generate images with such content, which might violate copyright laws and individual privacy. This phenomenon is termed imitation -- generation of images with content that has recognizable similarity to its training images. In this work we study the relationship between a concept's frequency in the training dataset and the ability of a model to imitate it. We seek to determine the point at which a model was trained on enough instances to imitate a concept -- the imitation threshold. We posit this question as a new problem: Finding the Imitation Threshold (FIT) and propose an efficient approach that estimates the imitation threshold without incurring the colossal cost of training multiple models from scratch. We experiment with two domains -- human faces and art styles -- for which we create four datasets, and evaluate three text-to-image models which were trained on two pretraining datasets. Our results reveal that the imitation threshold of these models is in the range of 200-600 images, depending on the domain and the model. The imitation threshold can provide an empirical basis for copyright violation claims and acts as a guiding principle for text-to-image model developers that aim to comply with copyright and privacy laws. We release the code and data at https://github.com/vsahil/MIMETIC-2.git and the project's website is hosted at https://how-many-van-goghs-does-it-take.github.io.

  • 9 authors
·
Oct 19, 2024 3

Unlearning Comparator: A Visual Analytics System for Comparative Evaluation of Machine Unlearning Methods

Machine Unlearning (MU) aims to remove target training data from a trained model so that the removed data no longer influences the model's behavior, fulfilling "right to be forgotten" obligations under data privacy laws. Yet, we observe that researchers in this rapidly emerging field face challenges in analyzing and understanding the behavior of different MU methods, especially in terms of three fundamental principles in MU: accuracy, efficiency, and privacy. Consequently, they often rely on aggregate metrics and ad-hoc evaluations, making it difficult to accurately assess the trade-offs between methods. To fill this gap, we introduce a visual analytics system, Unlearning Comparator, designed to facilitate the systematic evaluation of MU methods. Our system supports two important tasks in the evaluation process: model comparison and attack simulation. First, it allows the user to compare the behaviors of two models, such as a model generated by a certain method and a retrained baseline, at class-, instance-, and layer-levels to better understand the changes made after unlearning. Second, our system simulates membership inference attacks (MIAs) to evaluate the privacy of a method, where an attacker attempts to determine whether specific data samples were part of the original training set. We evaluate our system through a case study visually analyzing prominent MU methods and demonstrate that it helps the user not only understand model behaviors but also gain insights that can inform the improvement of MU methods.

  • 5 authors
·
Aug 18, 2025 2