1 DrivingDojo Dataset: Advancing Interactive and Knowledge-Enriched Driving World Model Driving world models have gained increasing attention due to their ability to model complex physical dynamics. However, their superb modeling capability is yet to be fully unleashed due to the limited video diversity in current driving datasets. We introduce DrivingDojo, the first dataset tailor-made for training interactive world models with complex driving dynamics. Our dataset features video clips with a complete set of driving maneuvers, diverse multi-agent interplay, and rich open-world driving knowledge, laying a stepping stone for future world model development. We further define an action instruction following (AIF) benchmark for world models and demonstrate the superiority of the proposed dataset for generating action-controlled future predictions. 8 authors · Oct 14, 2024
- CarDreamer: Open-Source Learning Platform for World Model based Autonomous Driving To safely navigate intricate real-world scenarios, autonomous vehicles must be able to adapt to diverse road conditions and anticipate future events. World model (WM) based reinforcement learning (RL) has emerged as a promising approach by learning and predicting the complex dynamics of various environments. Nevertheless, to the best of our knowledge, there does not exist an accessible platform for training and testing such algorithms in sophisticated driving environments. To fill this void, we introduce CarDreamer, the first open-source learning platform designed specifically for developing WM based autonomous driving algorithms. It comprises three key components: 1) World model backbone: CarDreamer has integrated some state-of-the-art WMs, which simplifies the reproduction of RL algorithms. The backbone is decoupled from the rest and communicates using the standard Gym interface, so that users can easily integrate and test their own algorithms. 2) Built-in tasks: CarDreamer offers a comprehensive set of highly configurable driving tasks which are compatible with Gym interfaces and are equipped with empirically optimized reward functions. 3) Task development suite: This suite streamlines the creation of driving tasks, enabling easy definition of traffic flows and vehicle routes, along with automatic collection of multi-modal observation data. A visualization server allows users to trace real-time agent driving videos and performance metrics through a browser. Furthermore, we conduct extensive experiments using built-in tasks to evaluate the performance and potential of WMs in autonomous driving. Thanks to the richness and flexibility of CarDreamer, we also systematically study the impact of observation modality, observability, and sharing of vehicle intentions on AV safety and efficiency. All code and documents are accessible on https://github.com/ucd-dare/CarDreamer. 6 authors · May 15, 2024