Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeArgus: Vision-Centric Reasoning with Grounded Chain-of-Thought
Recent advances in multimodal large language models (MLLMs) have demonstrated remarkable capabilities in vision-language tasks, yet they often struggle with vision-centric scenarios where precise visual focus is needed for accurate reasoning. In this paper, we introduce Argus to address these limitations with a new visual attention grounding mechanism. Our approach employs object-centric grounding as visual chain-of-thought signals, enabling more effective goal-conditioned visual attention during multimodal reasoning tasks. Evaluations on diverse benchmarks demonstrate that Argus excels in both multimodal reasoning tasks and referring object grounding tasks. Extensive analysis further validates various design choices of Argus, and reveals the effectiveness of explicit language-guided visual region-of-interest engagement in MLLMs, highlighting the importance of advancing multimodal intelligence from a visual-centric perspective. Project page: https://yunzeman.github.io/argus/
VoCoT: Unleashing Visually Grounded Multi-Step Reasoning in Large Multi-Modal Models
While large multi-modal models (LMMs) have exhibited impressive capabilities across diverse tasks, their effectiveness in handling complex tasks has been limited by the prevailing single-step reasoning paradigm. To this end, this paper proposes VoCoT, a multi-step Visually grounded object-centric Chain-of-Thought reasoning framework tailored for inference with LMMs. VoCoT is characterized by two key features: (1) object-centric reasoning paths that revolve around cross-modal shared object-level information, and (2) visually grounded representation of object concepts in a multi-modal interleaved and aligned manner, which effectively bridges the modality gap within LMMs during long-term generation. To adapt LMMs in reasoning with VoCoT, we further construct an instruction-tuning dataset. By combining VoCoT with the prevalent open-source LMM architectures, we develop a VoCoT-based model, VolCano. With only 7B parameters and limited input image resolution, VolCano demonstrates excellent performance across various scenarios. In benchmarks like CLEVR and EmbSpatial, which highly require complex reasoning capabilities, VolCano outperforms SOTA models, including powerful GPT-4V. Related code, data and models are released in https://github.com/RupertLuo/VoCoT.
Point Linguist Model: Segment Any Object via Bridged Large 3D-Language Model
3D object segmentation with Large Language Models (LLMs) has become a prevailing paradigm due to its broad semantics, task flexibility, and strong generalization. However, this paradigm is hindered by representation misalignment: LLMs process high-level semantic tokens, whereas 3D point clouds convey only dense geometric structures. In prior methods, misalignment limits both input and output. At the input stage, dense point patches require heavy pre-alignment, weakening object-level semantics and confusing similar distractors. At the output stage, predictions depend only on dense features without explicit geometric cues, leading to a loss of fine-grained accuracy. To address these limitations, we present the Point Linguist Model (PLM), a general framework that bridges the representation gap between LLMs and dense 3D point clouds without requiring large-scale pre-alignment between 3D-text or 3D-images. Specifically, we introduce Object-centric Discriminative Representation (OcDR), which learns object-centric tokens that capture target semantics and scene relations under a hard negative-aware training objective. This mitigates the misalignment between LLM tokens and 3D points, enhances resilience to distractors, and facilitates semantic-level reasoning within LLMs. For accurate segmentation, we introduce the Geometric Reactivation Decoder (GRD), which predicts masks by combining OcDR tokens carrying LLM-inferred geometry with corresponding dense features, preserving comprehensive dense features throughout the pipeline. Extensive experiments show that PLM achieves significant improvements of +7.3 mIoU on ScanNetv2 and +6.0 mIoU on Multi3DRefer for 3D referring segmentation, with consistent gains across 7 benchmarks spanning 4 different tasks, demonstrating the effectiveness of comprehensive object-centric reasoning for robust 3D understanding.
STRIDE-QA: Visual Question Answering Dataset for Spatiotemporal Reasoning in Urban Driving Scenes
Vision-Language Models (VLMs) have been applied to autonomous driving to support decision-making in complex real-world scenarios. However, their training on static, web-sourced image-text pairs fundamentally limits the precise spatiotemporal reasoning required to understand and predict dynamic traffic scenes. We address this critical gap with STRIDE-QA, a large-scale visual question answering (VQA) dataset for physically grounded reasoning from an ego-centric perspective. Constructed from 100 hours of multi-sensor driving data in Tokyo, capturing diverse and challenging conditions, STRIDE-QA is the largest VQA dataset for spatiotemporal reasoning in urban driving, offering 16 million QA pairs over 285K frames. Grounded by dense, automatically generated annotations including 3D bounding boxes, segmentation masks, and multi-object tracks, the dataset uniquely supports both object-centric and ego-centric reasoning through three novel QA tasks that require spatial localization and temporal prediction. Our benchmarks demonstrate that existing VLMs struggle significantly, achieving near-zero scores on prediction consistency. In contrast, VLMs fine-tuned on STRIDE-QA exhibit dramatic performance gains, achieving 55% success in spatial localization and 28% consistency in future motion prediction, compared to near-zero scores from general-purpose VLMs. Therefore, STRIDE-QA establishes a comprehensive foundation for developing more reliable VLMs for safety-critical autonomous systems.
PixelRefer: A Unified Framework for Spatio-Temporal Object Referring with Arbitrary Granularity
Multimodal large language models (MLLMs) have demonstrated strong general-purpose capabilities in open-world visual comprehension. However, most existing MLLMs primarily focus on holistic, scene-level understanding, often overlooking the need for fine-grained, object-centric reasoning. In this paper, we present PixelRefer, a unified region-level MLLM framework that enables advanced fine-grained understanding over user-specified regions across both images and videos. Motivated by the observation that LLM attention predominantly focuses on object-level tokens, we propose a Scale-Adaptive Object Tokenizer (SAOT) to generate compact and semantically rich object representations from free-form regions. Our analysis reveals that global visual tokens contribute mainly in early LLM layers, inspiring the design of PixelRefer-Lite, an efficient variant that employs an Object-Centric Infusion module to pre-fuse global context into object tokens. This yields a lightweight Object-Only Framework that substantially reduces computational cost while maintaining high semantic fidelity. To facilitate fine-grained instruction tuning, we curate PixelRefer-2.2M, a high-quality object-centric instruction dataset. Extensive experiments across a range of benchmarks validate that PixelRefer achieves leading performance with fewer training samples, while PixelRefer-Lite offers competitive accuracy with notable gains in efficiency.
Reasoning-Enhanced Object-Centric Learning for Videos
Object-centric learning aims to break down complex visual scenes into more manageable object representations, enhancing the understanding and reasoning abilities of machine learning systems toward the physical world. Recently, slot-based video models have demonstrated remarkable proficiency in segmenting and tracking objects, but they overlook the importance of the effective reasoning module. In the real world, reasoning and predictive abilities play a crucial role in human perception and object tracking; in particular, these abilities are closely related to human intuitive physics. Inspired by this, we designed a novel reasoning module called the Slot-based Time-Space Transformer with Memory buffer (STATM) to enhance the model's perception ability in complex scenes. The memory buffer primarily serves as storage for slot information from upstream modules, the Slot-based Time-Space Transformer makes predictions through slot-based spatiotemporal attention computations and fusion. Our experimental results on various datasets indicate that the STATM module can significantly enhance the capabilities of multiple state-of-the-art object-centric learning models for video. Moreover, as a predictive model, the STATM module also performs well in downstream prediction and Visual Question Answering (VQA) tasks. We will release our codes and data at https://github.com/intell-sci-comput/STATM.
Object-Centric Learning with Slot Attention
Learning object-centric representations of complex scenes is a promising step towards enabling efficient abstract reasoning from low-level perceptual features. Yet, most deep learning approaches learn distributed representations that do not capture the compositional properties of natural scenes. In this paper, we present the Slot Attention module, an architectural component that interfaces with perceptual representations such as the output of a convolutional neural network and produces a set of task-dependent abstract representations which we call slots. These slots are exchangeable and can bind to any object in the input by specializing through a competitive procedure over multiple rounds of attention. We empirically demonstrate that Slot Attention can extract object-centric representations that enable generalization to unseen compositions when trained on unsupervised object discovery and supervised property prediction tasks.
Object-centric Video Question Answering with Visual Grounding and Referring
Video Large Language Models (VideoLLMs) have recently demonstrated remarkable progress in general video understanding. However, existing models primarily focus on high-level comprehension and are limited to text-only responses, restricting the flexibility for object-centric, multiround interactions. In this paper, we make three contributions: (i) we address these limitations by introducing a VideoLLM model, capable of performing both object referring for input and grounding for output in video reasoning tasks, i.e., allowing users to interact with videos using both textual and visual prompts; (ii) we propose STOM (Spatial-Temporal Overlay Module), a novel approach that propagates arbitrary visual prompts input at any single timestamp to the remaining frames within a video; (iii) we present VideoInfer, a manually curated object-centric video instruction dataset featuring questionanswering pairs that require reasoning. We conduct comprehensive experiments on VideoInfer and other existing benchmarks across video question answering and referring object segmentation. The results on 12 benchmarks of 6 tasks show that our proposed model consistently outperforms baselines in both video question answering and segmentation, underscoring its robustness in multimodal, object-centric video and image understanding. Project page: https://qirui-chen.github.io/RGA3-release/.
Exploring the Effectiveness of Object-Centric Representations in Visual Question Answering: Comparative Insights with Foundation Models
Object-centric (OC) representations, which represent the state of a visual scene by modeling it as a composition of objects, have the potential to be used in various downstream tasks to achieve systematic compositional generalization and facilitate reasoning. However, these claims have not been thoroughly analyzed yet. Recently, foundation models have demonstrated unparalleled capabilities across diverse domains from language to computer vision, marking them as a potential cornerstone of future research for a multitude of computational tasks. In this paper, we conduct an extensive empirical study on representation learning for downstream Visual Question Answering (VQA), which requires an accurate compositional understanding of the scene. We thoroughly investigate the benefits and trade-offs of OC models and alternative approaches including large pre-trained foundation models on both synthetic and real-world data, and demonstrate a viable way to achieve the best of both worlds. The extensiveness of our study, encompassing over 600 downstream VQA models and 15 different types of upstream representations, also provides several additional insights that we believe will be of interest to the community at large.
OmniManip: Towards General Robotic Manipulation via Object-Centric Interaction Primitives as Spatial Constraints
The development of general robotic systems capable of manipulating in unstructured environments is a significant challenge. While Vision-Language Models(VLM) excel in high-level commonsense reasoning, they lack the fine-grained 3D spatial understanding required for precise manipulation tasks. Fine-tuning VLM on robotic datasets to create Vision-Language-Action Models(VLA) is a potential solution, but it is hindered by high data collection costs and generalization issues. To address these challenges, we propose a novel object-centric representation that bridges the gap between VLM's high-level reasoning and the low-level precision required for manipulation. Our key insight is that an object's canonical space, defined by its functional affordances, provides a structured and semantically meaningful way to describe interaction primitives, such as points and directions. These primitives act as a bridge, translating VLM's commonsense reasoning into actionable 3D spatial constraints. In this context, we introduce a dual closed-loop, open-vocabulary robotic manipulation system: one loop for high-level planning through primitive resampling, interaction rendering and VLM checking, and another for low-level execution via 6D pose tracking. This design ensures robust, real-time control without requiring VLM fine-tuning. Extensive experiments demonstrate strong zero-shot generalization across diverse robotic manipulation tasks, highlighting the potential of this approach for automating large-scale simulation data generation.
Caption Anything in Video: Fine-grained Object-centric Captioning via Spatiotemporal Multimodal Prompting
We present CAT-V (Caption AnyThing in Video), a training-free framework for fine-grained object-centric video captioning that enables detailed descriptions of user-selected objects through time. CAT-V integrates three key components: a Segmenter based on SAMURAI for precise object segmentation across frames, a Temporal Analyzer powered by TRACE-Uni for accurate event boundary detection and temporal analysis, and a Captioner using InternVL-2.5 for generating detailed object-centric descriptions. Through spatiotemporal visual prompts and chain-of-thought reasoning, our framework generates detailed, temporally-aware descriptions of objects' attributes, actions, statuses, interactions, and environmental contexts without requiring additional training data. CAT-V supports flexible user interactions through various visual prompts (points, bounding boxes, and irregular regions) and maintains temporal sensitivity by tracking object states and interactions across different time segments. Our approach addresses limitations of existing video captioning methods, which either produce overly abstract descriptions or lack object-level precision, enabling fine-grained, object-specific descriptions while maintaining temporal coherence and spatial accuracy. The GitHub repository for this project is available at https://github.com/yunlong10/CAT-V
ST(OR)2: Spatio-Temporal Object Level Reasoning for Activity Recognition in the Operating Room
Surgical robotics holds much promise for improving patient safety and clinician experience in the Operating Room (OR). However, it also comes with new challenges, requiring strong team coordination and effective OR management. Automatic detection of surgical activities is a key requirement for developing AI-based intelligent tools to tackle these challenges. The current state-of-the-art surgical activity recognition methods however operate on image-based representations and depend on large-scale labeled datasets whose collection is time-consuming and resource-expensive. This work proposes a new sample-efficient and object-based approach for surgical activity recognition in the OR. Our method focuses on the geometric arrangements between clinicians and surgical devices, thus utilizing the significant object interaction dynamics in the OR. We conduct experiments in a low-data regime study for long video activity recognition. We also benchmark our method againstother object-centric approaches on clip-level action classification and show superior performance.
VISA: Reasoning Video Object Segmentation via Large Language Models
Existing Video Object Segmentation (VOS) relies on explicit user instructions, such as categories, masks, or short phrases, restricting their ability to perform complex video segmentation requiring reasoning with world knowledge. In this paper, we introduce a new task, Reasoning Video Object Segmentation (ReasonVOS). This task aims to generate a sequence of segmentation masks in response to implicit text queries that require complex reasoning abilities based on world knowledge and video contexts, which is crucial for structured environment understanding and object-centric interactions, pivotal in the development of embodied AI. To tackle ReasonVOS, we introduce VISA (Video-based large language Instructed Segmentation Assistant), to leverage the world knowledge reasoning capabilities of multi-modal LLMs while possessing the ability to segment and track objects in videos with a mask decoder. Moreover, we establish a comprehensive benchmark consisting of 35,074 instruction-mask sequence pairs from 1,042 diverse videos, which incorporates complex world knowledge reasoning into segmentation tasks for instruction-tuning and evaluation purposes of ReasonVOS models. Experiments conducted on 8 datasets demonstrate the effectiveness of VISA in tackling complex reasoning segmentation and vanilla referring segmentation in both video and image domains. The code and dataset are available at https://github.com/cilinyan/VISA.
Learning to Compose: Improving Object Centric Learning by Injecting Compositionality
Learning compositional representation is a key aspect of object-centric learning as it enables flexible systematic generalization and supports complex visual reasoning. However, most of the existing approaches rely on auto-encoding objective, while the compositionality is implicitly imposed by the architectural or algorithmic bias in the encoder. This misalignment between auto-encoding objective and learning compositionality often results in failure of capturing meaningful object representations. In this study, we propose a novel objective that explicitly encourages compositionality of the representations. Built upon the existing object-centric learning framework (e.g., slot attention), our method incorporates additional constraints that an arbitrary mixture of object representations from two images should be valid by maximizing the likelihood of the composite data. We demonstrate that incorporating our objective to the existing framework consistently improves the objective-centric learning and enhances the robustness to the architectural choices.
Concept-Centric Transformers: Enhancing Model Interpretability through Object-Centric Concept Learning within a Shared Global Workspace
Many interpretable AI approaches have been proposed to provide plausible explanations for a model's decision-making. However, configuring an explainable model that effectively communicates among computational modules has received less attention. A recently proposed shared global workspace theory showed that networks of distributed modules can benefit from sharing information with a bottlenecked memory because the communication constraints encourage specialization, compositionality, and synchronization among the modules. Inspired by this, we propose Concept-Centric Transformers, a simple yet effective configuration of the shared global workspace for interpretability, consisting of: i) an object-centric-based memory module for extracting semantic concepts from input features, ii) a cross-attention mechanism between the learned concept and input embeddings, and iii) standard classification and explanation losses to allow human analysts to directly assess an explanation for the model's classification reasoning. We test our approach against other existing concept-based methods on classification tasks for various datasets, including CIFAR100, CUB-200-2011, and ImageNet, and we show that our model achieves better classification accuracy than all baselines across all problems but also generates more consistent concept-based explanations of classification output.
ManipLLM: Embodied Multimodal Large Language Model for Object-Centric Robotic Manipulation
Robot manipulation relies on accurately predicting contact points and end-effector directions to ensure successful operation. However, learning-based robot manipulation, trained on a limited category within a simulator, often struggles to achieve generalizability, especially when confronted with extensive categories. Therefore, we introduce an innovative approach for robot manipulation that leverages the robust reasoning capabilities of Multimodal Large Language Models (MLLMs) to enhance the stability and generalization of manipulation. By fine-tuning the injected adapters, we preserve the inherent common sense and reasoning ability of the MLLMs while equipping them with the ability for manipulation. The fundamental insight lies in the introduced fine-tuning paradigm, encompassing object category understanding, affordance prior reasoning, and object-centric pose prediction to stimulate the reasoning ability of MLLM in manipulation. During inference, our approach utilizes an RGB image and text prompt to predict the end effector's pose in chain of thoughts. After the initial contact is established, an active impedance adaptation policy is introduced to plan the upcoming waypoints in a closed-loop manner. Moreover, in real world, we design a test-time adaptation (TTA) strategy for manipulation to enable the model better adapt to the current real-world scene configuration. Experiments in simulator and real-world show the promising performance of ManipLLM. More details and demonstrations can be found at https://sites.google.com/view/manipllm.
UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.
Vector-Quantized Vision Foundation Models for Object-Centric Learning
Perceiving visual scenes as objects and background -- like humans do -- Object-Centric Learning (OCL) aggregates image or video feature maps into object-level feature vectors, termed slots. OCL's self-supervision of reconstructing the input from these aggregated slots struggles with complex object textures, thus Vision Foundation Model (VFM) representations are used as the aggregation input and reconstruction target. However, existing methods leverage VFM representations in diverse ways and often fail to fully exploit their potential. In response, we propose a clean architecture -- Vector-Quantized VFMs for OCL (VQ-VFM-OCL, or VVO) -- that unifies mainstream OCL methods. The key to our unification is simple yet effective, just shared quantizing the same VFM representation as the reconstruction target. Through mathematical modeling and statistical verification, we further analyze why VFM representations facilitate OCL aggregation and how their shared quantization as reconstruction targets strengthens OCL supervision. Experiments show that across different VFMs, aggregators and decoders, our VVO consistently outperforms baselines in object discovery and recognition, as well as downstream visual prediction and reasoning. The source code is available in supplemental files.
An Investigation into Pre-Training Object-Centric Representations for Reinforcement Learning
Unsupervised object-centric representation (OCR) learning has recently drawn attention as a new paradigm of visual representation. This is because of its potential of being an effective pre-training technique for various downstream tasks in terms of sample efficiency, systematic generalization, and reasoning. Although image-based reinforcement learning (RL) is one of the most important and thus frequently mentioned such downstream tasks, the benefit in RL has surprisingly not been investigated systematically thus far. Instead, most of the evaluations have focused on rather indirect metrics such as segmentation quality and object property prediction accuracy. In this paper, we investigate the effectiveness of OCR pre-training for image-based reinforcement learning via empirical experiments. For systematic evaluation, we introduce a simple object-centric visual RL benchmark and conduct experiments to answer questions such as ``Does OCR pre-training improve performance on object-centric tasks?'' and ``Can OCR pre-training help with out-of-distribution generalization?''. Our results provide empirical evidence for valuable insights into the effectiveness of OCR pre-training for RL and the potential limitations of its use in certain scenarios. Additionally, this study also examines the critical aspects of incorporating OCR pre-training in RL, including performance in a visually complex environment and the appropriate pooling layer to aggregate the object representations.
ReVSeg: Incentivizing the Reasoning Chain for Video Segmentation with Reinforcement Learning
Reasoning-centric video object segmentation is an inherently complex task: the query often refers to dynamics, causality, and temporal interactions, rather than static appearances. Yet existing solutions generally collapse these factors into simplified reasoning with latent embeddings, rendering the reasoning chain opaque and essentially intractable. We therefore adopt an explicit decomposition perspective and introduce ReVSeg, which executes reasoning as sequential decisions in the native interface of pretrained vision language models (VLMs). Rather than folding all reasoning into a single-step prediction, ReVSeg executes three explicit operations -- semantics interpretation, temporal evidence selection, and spatial grounding -- aligning pretrained capabilities. We further employ reinforcement learning to optimize the multi-step reasoning chain, enabling the model to self-refine its decision quality from outcome-driven signals. Experimental results demonstrate that ReVSeg attains state-of-the-art performances on standard video object segmentation benchmarks and yields interpretable reasoning trajectories. Project page is available at https://clementine24.github.io/ReVSeg/ .
Actial: Activate Spatial Reasoning Ability of Multimodal Large Language Models
Recent advances in Multimodal Large Language Models (MLLMs) have significantly improved 2D visual understanding, prompting interest in their application to complex 3D reasoning tasks. However, it remains unclear whether these models can effectively capture the detailed spatial information required for robust real-world performance, especially cross-view consistency, a key requirement for accurate 3D reasoning. Considering this issue, we introduce Viewpoint Learning, a task designed to evaluate and improve the spatial reasoning capabilities of MLLMs. We present the Viewpoint-100K dataset, consisting of 100K object-centric image pairs with diverse viewpoints and corresponding question-answer pairs. Our approach employs a two-stage fine-tuning strategy: first, foundational knowledge is injected to the baseline MLLM via Supervised Fine-Tuning (SFT) on Viewpoint-100K, resulting in significant improvements across multiple tasks; second, generalization is enhanced through Reinforcement Learning using the Group Relative Policy Optimization (GRPO) algorithm on a broader set of questions. Additionally, we introduce a hybrid cold-start initialization method designed to simultaneously learn viewpoint representations and maintain coherent reasoning thinking. Experimental results show that our approach significantly activates the spatial reasoning ability of MLLM, improving performance on both in-domain and out-of-domain reasoning tasks. Our findings highlight the value of developing foundational spatial skills in MLLMs, supporting future progress in robotics, autonomous systems, and 3D scene understanding.
3D-Mem: 3D Scene Memory for Embodied Exploration and Reasoning
Constructing compact and informative 3D scene representations is essential for effective embodied exploration and reasoning, especially in complex environments over extended periods. Existing representations, such as object-centric 3D scene graphs, oversimplify spatial relationships by modeling scenes as isolated objects with restrictive textual relationships, making it difficult to address queries requiring nuanced spatial understanding. Moreover, these representations lack natural mechanisms for active exploration and memory management, hindering their application to lifelong autonomy. In this work, we propose 3D-Mem, a novel 3D scene memory framework for embodied agents. 3D-Mem employs informative multi-view images, termed Memory Snapshots, to represent the scene and capture rich visual information of explored regions. It further integrates frontier-based exploration by introducing Frontier Snapshots-glimpses of unexplored areas-enabling agents to make informed decisions by considering both known and potential new information. To support lifelong memory in active exploration settings, we present an incremental construction pipeline for 3D-Mem, as well as a memory retrieval technique for memory management. Experimental results on three benchmarks demonstrate that 3D-Mem significantly enhances agents' exploration and reasoning capabilities in 3D environments, highlighting its potential for advancing applications in embodied AI.
Generalized Planning for the Abstraction and Reasoning Corpus
The Abstraction and Reasoning Corpus (ARC) is a general artificial intelligence benchmark that poses difficulties for pure machine learning methods due to its requirement for fluid intelligence with a focus on reasoning and abstraction. In this work, we introduce an ARC solver, Generalized Planning for Abstract Reasoning (GPAR). It casts an ARC problem as a generalized planning (GP) problem, where a solution is formalized as a planning program with pointers. We express each ARC problem using the standard Planning Domain Definition Language (PDDL) coupled with external functions representing object-centric abstractions. We show how to scale up GP solvers via domain knowledge specific to ARC in the form of restrictions over the actions model, predicates, arguments and valid structure of planning programs. Our experiments demonstrate that GPAR outperforms the state-of-the-art solvers on the object-centric tasks of the ARC, showing the effectiveness of GP and the expressiveness of PDDL to model ARC problems. The challenges provided by the ARC benchmark motivate research to advance existing GP solvers and understand new relations with other planning computational models. Code is available at github.com/you68681/GPAR.
Artemis: Structured Visual Reasoning for Perception Policy Learning
Recent reinforcement-learning frameworks for visual perception policy have begun to incorporate intermediate reasoning chains expressed in natural language. Empirical observations indicate that such purely linguistic intermediate reasoning often reduces performance on perception tasks. We argue that the core issue lies not in reasoning per se but in the form of reasoning: while these chains perform semantic reasoning in an unstructured linguistic space, visual perception requires reasoning in a spatial and object-centric space. In response, we introduce Artemis, a perception-policy learning framework that performs structured proposal-based reasoning, where each intermediate step is represented as a (label, bounding-box) pair capturing a verifiable visual state. This design enables explicit tracking of intermediate states, direct supervision for proposal quality, and avoids ambiguity introduced by language-based reasoning. Artemis is built on Qwen2.5-VL-3B, achieves strong performance on grounding and detection task and exhibits substantial generalization to counting and geometric-perception tasks. The consistent improvements across these diverse settings confirm that aligning reasoning with spatial representations enhances perception-policy learning. Owing to its strengthened visual reasoning, Artemis also achieves competitive performance on general MLLM benchmarks, illustrating that spatially grounded reasoning provides a principled route toward scalable and general perception policies.
ThinkSound: Chain-of-Thought Reasoning in Multimodal Large Language Models for Audio Generation and Editing
While end-to-end video-to-audio generation has greatly improved, producing high-fidelity audio that authentically captures the nuances of visual content remains challenging. Like professionals in the creative industries, such generation requires sophisticated reasoning about items such as visual dynamics, acoustic environments, and temporal relationships. We present ThinkSound, a novel framework that leverages Chain-of-Thought (CoT) reasoning to enable stepwise, interactive audio generation and editing for videos. Our approach decomposes the process into three complementary stages: foundational foley generation that creates semantically coherent soundscapes, interactive object-centric refinement through precise user interactions, and targeted editing guided by natural language instructions. At each stage, a multimodal large language model generates contextually aligned CoT reasoning that guides a unified audio foundation model. Furthermore, we introduce AudioCoT, a comprehensive dataset with structured reasoning annotations that establishes connections between visual content, textual descriptions, and sound synthesis. Experiments demonstrate that ThinkSound achieves state-of-the-art performance in video-to-audio generation across both audio metrics and CoT metrics and excels in out-of-distribution Movie Gen Audio benchmark. The demo page is available at https://ThinkSound-Project.github.io.
Open3DVQA: A Benchmark for Comprehensive Spatial Reasoning with Multimodal Large Language Model in Open Space
Spatial reasoning is a fundamental capability of embodied agents and has garnered widespread attention in the field of multimodal large language models (MLLMs). In this work, we propose a novel benchmark, Open3DVQA, to comprehensively evaluate the spatial reasoning capacities of current state-of-the-art (SOTA) foundation models in open 3D space. Open3DVQA consists of 9k VQA samples, collected using an efficient semi-automated tool in a high-fidelity urban simulator. We evaluate several SOTA MLLMs across various aspects of spatial reasoning, such as relative and absolute spatial relationships, situational reasoning, and object-centric spatial attributes. Our results reveal that: 1) MLLMs perform better at answering questions regarding relative spatial relationships than absolute spatial relationships, 2) MLLMs demonstrate similar spatial reasoning abilities for both egocentric and allocentric perspectives, and 3) Fine-tuning large models significantly improves their performance across different spatial reasoning tasks. We believe that our open-source data collection tools and in-depth analyses will inspire further research on MLLM spatial reasoning capabilities. The benchmark is available at https://github.com/WeichenZh/Open3DVQA.
ScanReason: Empowering 3D Visual Grounding with Reasoning Capabilities
Although great progress has been made in 3D visual grounding, current models still rely on explicit textual descriptions for grounding and lack the ability to reason human intentions from implicit instructions. We propose a new task called 3D reasoning grounding and introduce a new benchmark ScanReason which provides over 10K question-answer-location pairs from five reasoning types that require the synerization of reasoning and grounding. We further design our approach, ReGround3D, composed of the visual-centric reasoning module empowered by Multi-modal Large Language Model (MLLM) and the 3D grounding module to obtain accurate object locations by looking back to the enhanced geometry and fine-grained details from the 3D scenes. A chain-of-grounding mechanism is proposed to further boost the performance with interleaved reasoning and grounding steps during inference. Extensive experiments on the proposed benchmark validate the effectiveness of our proposed approach.
Struct2D: A Perception-Guided Framework for Spatial Reasoning in Large Multimodal Models
Unlocking spatial reasoning in Large Multimodal Models (LMMs) is crucial for enabling intelligent interaction with 3D environments. While prior efforts often rely on explicit 3D inputs or specialized model architectures, we ask: can LMMs reason about 3D space using only structured 2D representations derived from perception? We introduce Struct2D, a perception-guided prompting framework that combines bird's-eye-view (BEV) images with object marks and object-centric metadata, optionally incorporating egocentric keyframes when needed. Using Struct2D, we conduct an in-depth zero-shot analysis of closed-source LMMs (e.g., GPT-o3) and find that they exhibit surprisingly strong spatial reasoning abilities when provided with structured 2D inputs, effectively handling tasks such as relative direction estimation and route planning. Building on these insights, we construct Struct2D-Set, a large-scale instruction tuning dataset with 200K fine-grained QA pairs across eight spatial reasoning categories, generated automatically from 3D indoor scenes. We fine-tune an open-source LMM (Qwen2.5VL) on Struct2D-Set, achieving competitive performance on multiple benchmarks, including 3D question answering, dense captioning, and object grounding. Our approach demonstrates that structured 2D inputs can effectively bridge perception and language reasoning in LMMs-without requiring explicit 3D representations as input. We will release both our code and dataset to support future research.
VLM-FO1: Bridging the Gap Between High-Level Reasoning and Fine-Grained Perception in VLMs
Vision-Language Models (VLMs) excel at high-level scene understanding but falter on fine-grained perception tasks requiring precise localization. This failure stems from a fundamental mismatch, as generating exact numerical coordinates is a challenging task for language-centric architectures. In this paper, we introduce VLM-FO1, a novel framework that overcomes this limitation by reframing object-centric perception from a brittle coordinate generation problem into a robust feature retrieval task. Our method operates as a plug-and-play module that integrates with any pre-trained VLM. It leverages a Hybrid Fine-grained Region Encoder (HFRE), featuring a dual vision encoder, to generate powerful region tokens rich in both semantic and spatial detail. A token-based referencing system then enables the LLM to seamlessly reason about and ground language in these specific visual regions. Experiments show that VLM-FO1 achieves state-of-the-art performance across a diverse suite of benchmarks, demonstrating exceptional capabilities in object grounding, region generational understanding, and visual region reasoning. Crucially, our two-stage training strategy ensures that these perception gains are achieved without compromising the base model's general visual understanding capabilities. VLM-FO1 establishes an effective and flexible paradigm for building perception-aware VLMs, bridging the gap between high-level reasoning and fine-grained visual grounding.
UniAff: A Unified Representation of Affordances for Tool Usage and Articulation with Vision-Language Models
Previous studies on robotic manipulation are based on a limited understanding of the underlying 3D motion constraints and affordances. To address these challenges, we propose a comprehensive paradigm, termed UniAff, that integrates 3D object-centric manipulation and task understanding in a unified formulation. Specifically, we constructed a dataset labeled with manipulation-related key attributes, comprising 900 articulated objects from 19 categories and 600 tools from 12 categories. Furthermore, we leverage MLLMs to infer object-centric representations for manipulation tasks, including affordance recognition and reasoning about 3D motion constraints. Comprehensive experiments in both simulation and real-world settings indicate that UniAff significantly improves the generalization of robotic manipulation for tools and articulated objects. We hope that UniAff will serve as a general baseline for unified robotic manipulation tasks in the future. Images, videos, dataset, and code are published on the project website at:https://sites.google.com/view/uni-aff/home
Understanding Video Transformers via Universal Concept Discovery
This paper studies the problem of concept-based interpretability of transformer representations for videos. Concretely, we seek to explain the decision-making process of video transformers based on high-level, spatiotemporal concepts that are automatically discovered. Prior research on concept-based interpretability has concentrated solely on image-level tasks. Comparatively, video models deal with the added temporal dimension, increasing complexity and posing challenges in identifying dynamic concepts over time. In this work, we systematically address these challenges by introducing the first Video Transformer Concept Discovery (VTCD) algorithm. To this end, we propose an efficient approach for unsupervised identification of units of video transformer representations - concepts, and ranking their importance to the output of a model. The resulting concepts are highly interpretable, revealing spatio-temporal reasoning mechanisms and object-centric representations in unstructured video models. Performing this analysis jointly over a diverse set of supervised and self-supervised representations, we discover that some of these mechanism are universal in video transformers. Finally, we demonstrate that VTCDcan be used to improve model performance for fine-grained tasks.
Hummingbird: High Fidelity Image Generation via Multimodal Context Alignment
While diffusion models are powerful in generating high-quality, diverse synthetic data for object-centric tasks, existing methods struggle with scene-aware tasks such as Visual Question Answering (VQA) and Human-Object Interaction (HOI) Reasoning, where it is critical to preserve scene attributes in generated images consistent with a multimodal context, i.e. a reference image with accompanying text guidance query. To address this, we introduce Hummingbird, the first diffusion-based image generator which, given a multimodal context, generates highly diverse images w.r.t. the reference image while ensuring high fidelity by accurately preserving scene attributes, such as object interactions and spatial relationships from the text guidance. Hummingbird employs a novel Multimodal Context Evaluator that simultaneously optimizes our formulated Global Semantic and Fine-grained Consistency Rewards to ensure generated images preserve the scene attributes of reference images in relation to the text guidance while maintaining diversity. As the first model to address the task of maintaining both diversity and fidelity given a multimodal context, we introduce a new benchmark formulation incorporating MME Perception and Bongard HOI datasets. Benchmark experiments show Hummingbird outperforms all existing methods by achieving superior fidelity while maintaining diversity, validating Hummingbird's potential as a robust multimodal context-aligned image generator in complex visual tasks.
Analyzing and Boosting the Power of Fine-Grained Visual Recognition for Multi-modal Large Language Models
Multi-modal large language models (MLLMs) have shown remarkable abilities in various visual understanding tasks. However, MLLMs still struggle with fine-grained visual recognition (FGVR), which aims to identify subordinate-level categories from images. This can negatively impact more advanced capabilities of MLLMs, such as object-centric visual question answering and reasoning. In our study, we revisit three quintessential capabilities of MLLMs for FGVR, including object information extraction, category knowledge reserve, object-category alignment, and position of the root cause as a misalignment problem. To address this issue, we present Finedefics, an MLLM that enhances the model's FGVR capability by incorporating informative attribute descriptions of objects into the training phase. We employ contrastive learning on object-attribute pairs and attribute-category pairs simultaneously and use examples from similar but incorrect categories as hard negatives, naturally bringing representations of visual objects and category names closer. Extensive evaluations across multiple popular FGVR datasets demonstrate that Finedefics outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code is available at https://github.com/PKU-ICST-MIPL/Finedefics_ICLR2025.
Learning Action and Reasoning-Centric Image Editing from Videos and Simulations
An image editing model should be able to perform diverse edits, ranging from object replacement, changing attributes or style, to performing actions or movement, which require many forms of reasoning. Current general instruction-guided editing models have significant shortcomings with action and reasoning-centric edits. Object, attribute or stylistic changes can be learned from visually static datasets. On the other hand, high-quality data for action and reasoning-centric edits is scarce and has to come from entirely different sources that cover e.g. physical dynamics, temporality and spatial reasoning. To this end, we meticulously curate the AURORA Dataset (Action-Reasoning-Object-Attribute), a collection of high-quality training data, human-annotated and curated from videos and simulation engines. We focus on a key aspect of quality training data: triplets (source image, prompt, target image) contain a single meaningful visual change described by the prompt, i.e., truly minimal changes between source and target images. To demonstrate the value of our dataset, we evaluate an AURORA-finetuned model on a new expert-curated benchmark (AURORA-Bench) covering 8 diverse editing tasks. Our model significantly outperforms previous editing models as judged by human raters. For automatic evaluations, we find important flaws in previous metrics and caution their use for semantically hard editing tasks. Instead, we propose a new automatic metric that focuses on discriminative understanding. We hope that our efforts : (1) curating a quality training dataset and an evaluation benchmark, (2) developing critical evaluations, and (3) releasing a state-of-the-art model, will fuel further progress on general image editing.
Multiverse Through Deepfakes: The MultiFakeVerse Dataset of Person-Centric Visual and Conceptual Manipulations
The rapid advancement of GenAI technology over the past few years has significantly contributed towards highly realistic deepfake content generation. Despite ongoing efforts, the research community still lacks a large-scale and reasoning capability driven deepfake benchmark dataset specifically tailored for person-centric object, context and scene manipulations. In this paper, we address this gap by introducing MultiFakeVerse, a large scale person-centric deepfake dataset, comprising 845,286 images generated through manipulation suggestions and image manipulations both derived from vision-language models (VLM). The VLM instructions were specifically targeted towards modifications to individuals or contextual elements of a scene that influence human perception of importance, intent, or narrative. This VLM-driven approach enables semantic, context-aware alterations such as modifying actions, scenes, and human-object interactions rather than synthetic or low-level identity swaps and region-specific edits that are common in existing datasets. Our experiments reveal that current state-of-the-art deepfake detection models and human observers struggle to detect these subtle yet meaningful manipulations. The code and dataset are available on https://github.com/Parul-Gupta/MultiFakeVerse{GitHub}.
GaussianVLM: Scene-centric 3D Vision-Language Models using Language-aligned Gaussian Splats for Embodied Reasoning and Beyond
As multimodal language models advance, their application to 3D scene understanding is a fast-growing frontier, driving the development of 3D Vision-Language Models (VLMs). Current methods show strong dependence on object detectors, introducing processing bottlenecks and limitations in taxonomic flexibility. To address these limitations, we propose a scene-centric 3D VLM for 3D Gaussian splat scenes that employs language- and task-aware scene representations. Our approach directly embeds rich linguistic features into the 3D scene representation by associating language with each Gaussian primitive, achieving early modality alignment. To process the resulting dense representations, we introduce a dual sparsifier that distills them into compact, task-relevant tokens via task-guided and location-guided pathways, producing sparse, task-aware global and local scene tokens. Notably, we present the first Gaussian splatting-based VLM, leveraging photorealistic 3D representations derived from standard RGB images, demonstrating strong generalization: it improves performance of prior 3D VLM five folds, in out-of-the-domain settings.
ApexNav: An Adaptive Exploration Strategy for Zero-Shot Object Navigation with Target-centric Semantic Fusion
Navigating unknown environments to find a target object is a significant challenge. While semantic information is crucial for navigation, relying solely on it for decision-making may not always be efficient, especially in environments with weak semantic cues. Additionally, many methods are susceptible to misdetections, especially in environments with visually similar objects. To address these limitations, we propose ApexNav, a zero-shot object navigation framework that is both more efficient and reliable. For efficiency, ApexNav adaptively utilizes semantic information by analyzing its distribution in the environment, guiding exploration through semantic reasoning when cues are strong, and switching to geometry-based exploration when they are weak. For reliability, we propose a target-centric semantic fusion method that preserves long-term memory of the target object and similar objects, reducing false detections and minimizing task failures. We evaluate ApexNav on the HM3Dv1, HM3Dv2, and MP3D datasets, where it outperforms state-of-the-art methods in both SR and SPL metrics. Comprehensive ablation studies further demonstrate the effectiveness of each module. Furthermore, real-world experiments validate the practicality of ApexNav in physical environments. Project page is available at https://robotics-star.com/ApexNav.
MomentSeg: Moment-Centric Sampling for Enhanced Video Pixel Understanding
Referring Video Object Segmentation (RefVOS) seeks to segment target objects in videos guided by natural language descriptions, demanding both temporal reasoning and fine-grained visual comprehension. Existing sampling strategies for LLM-based approaches typically rely on either handcrafted heuristics or external keyframe models. The former often overlooks essential temporal cues, while the latter increases system complexity. To address this, we propose a unified framework that jointly optimizes Temporal Sentence Grounding (TSG) and RefVOS, naturally incorporating key moment grounding capability. During training, we introduce a novel TSG paradigm that employs a dedicated [FIND] token for key moment identification through temporal token similarity matching, thereby avoiding the need for external timestamp encodings. For inference, we design a Moment-Centric Sampling (MCS) strategy that densely samples informative moments while sparsely sampling non-essential frames, preserving both motion details and global context. To further enhance tracking stability, we develop Bidirectional Anchor-updated Propagation (BAP), which leverages the most relevant moment as start point for high-quality mask initialization and dynamically updates at sampled points to mitigate accumulated errors. Code and model will be available at: https://github.com/Dmmm1997/MomentSeg
HandsOnVLM: Vision-Language Models for Hand-Object Interaction Prediction
How can we predict future interaction trajectories of human hands in a scene given high-level colloquial task specifications in the form of natural language? In this paper, we extend the classic hand trajectory prediction task to two tasks involving explicit or implicit language queries. Our proposed tasks require extensive understanding of human daily activities and reasoning abilities about what should be happening next given cues from the current scene. We also develop new benchmarks to evaluate the proposed two tasks, Vanilla Hand Prediction (VHP) and Reasoning-Based Hand Prediction (RBHP). We enable solving these tasks by integrating high-level world knowledge and reasoning capabilities of Vision-Language Models (VLMs) with the auto-regressive nature of low-level ego-centric hand trajectories. Our model, HandsOnVLM is a novel VLM that can generate textual responses and produce future hand trajectories through natural-language conversations. Our experiments show that HandsOnVLM outperforms existing task-specific methods and other VLM baselines on proposed tasks, and demonstrates its ability to effectively utilize world knowledge for reasoning about low-level human hand trajectories based on the provided context. Our website contains code and detailed video results https://www.chenbao.tech/handsonvlm/
Towards Fine-Grained Video Question Answering
In the rapidly evolving domain of video understanding, Video Question Answering (VideoQA) remains a focal point. However, existing datasets exhibit gaps in temporal and spatial granularity, which consequently limits the capabilities of existing VideoQA methods. This paper introduces the Multi-Object Multi-Actor Question Answering (MOMA-QA) dataset, which is designed to address these shortcomings by emphasizing temporal localization, spatial relationship reasoning, and entity-centric queries. With ground truth scene graphs and temporal interval annotations, MOMA-QA is ideal for developing models for fine-grained video understanding. Furthermore, we present a novel video-language model, SGVLM, which incorporates a scene graph predictor, an efficient frame retriever, and a pre-trained large language model for temporal localization and fine-grained relationship understanding. Evaluations on MOMA-QA and other public datasets demonstrate the superior performance of our model, setting new benchmarks for VideoQA.
RynnEC: Bringing MLLMs into Embodied World
We introduce RynnEC, a video multimodal large language model designed for embodied cognition. Built upon a general-purpose vision-language foundation model, RynnEC incorporates a region encoder and a mask decoder, enabling flexible region-level video interaction. Despite its compact architecture, RynnEC achieves state-of-the-art performance in object property understanding, object segmentation, and spatial reasoning. Conceptually, it offers a region-centric video paradigm for the brain of embodied agents, providing fine-grained perception of the physical world and enabling more precise interactions. To mitigate the scarcity of annotated 3D datasets, we propose an egocentric video based pipeline for generating embodied cognition data. Furthermore, we introduce RynnEC-Bench, a region-centered benchmark for evaluating embodied cognitive capabilities. We anticipate that RynnEC will advance the development of general-purpose cognitive cores for embodied agents and facilitate generalization across diverse embodied tasks. The code, model checkpoints, and benchmark are available at: https://github.com/alibaba-damo-academy/RynnEC
Visual Representation Alignment for Multimodal Large Language Models
Multimodal large language models (MLLMs) trained with visual instruction tuning have achieved strong performance across diverse tasks, yet they remain limited in vision-centric tasks such as object counting or spatial reasoning. We attribute this gap to the prevailing text-only supervision paradigm, which provides only indirect guidance for the visual pathway and often leads MLLMs to discard fine-grained visual details during training. In this paper, we present VIsual Representation ALignment (VIRAL), a simple yet effective regularization strategy that aligns the internal visual representations of MLLMs with those of pre-trained vision foundation models (VFMs). By explicitly enforcing this alignment, VIRAL enables the model not only to retain critical visual details from the input vision encoder but also to complement additional visual knowledge from VFMs, thereby enhancing its ability to reason over complex visual inputs. Our experiments demonstrate consistent improvements across all tasks on widely adopted multimodal benchmarks. Furthermore, we conduct comprehensive ablation studies to validate the key design choices underlying our framework. We believe this simple finding opens up an important direction for the effective integration of visual information in training MLLMs.
Scene-LLM: Extending Language Model for 3D Visual Understanding and Reasoning
This paper introduces Scene-LLM, a 3D-visual-language model that enhances embodied agents' abilities in interactive 3D indoor environments by integrating the reasoning strengths of Large Language Models (LLMs). Scene-LLM adopts a hybrid 3D visual feature representation, that incorporates dense spatial information and supports scene state updates. The model employs a projection layer to efficiently project these features in the pre-trained textual embedding space, enabling effective interpretation of 3D visual information. Unique to our approach is the integration of both scene-level and ego-centric 3D information. This combination is pivotal for interactive planning, where scene-level data supports global planning and ego-centric data is important for localization. Notably, we use ego-centric 3D frame features for feature alignment, an efficient technique that enhances the model's ability to align features of small objects within the scene. Our experiments with Scene-LLM demonstrate its strong capabilities in dense captioning, question answering, and interactive planning. We believe Scene-LLM advances the field of 3D visual understanding and reasoning, offering new possibilities for sophisticated agent interactions in indoor settings.
Mask2IV: Interaction-Centric Video Generation via Mask Trajectories
Generating interaction-centric videos, such as those depicting humans or robots interacting with objects, is crucial for embodied intelligence, as they provide rich and diverse visual priors for robot learning, manipulation policy training, and affordance reasoning. However, existing methods often struggle to model such complex and dynamic interactions. While recent studies show that masks can serve as effective control signals and enhance generation quality, obtaining dense and precise mask annotations remains a major challenge for real-world use. To overcome this limitation, we introduce Mask2IV, a novel framework specifically designed for interaction-centric video generation. It adopts a decoupled two-stage pipeline that first predicts plausible motion trajectories for both actor and object, then generates a video conditioned on these trajectories. This design eliminates the need for dense mask inputs from users while preserving the flexibility to manipulate the interaction process. Furthermore, Mask2IV supports versatile and intuitive control, allowing users to specify the target object of interaction and guide the motion trajectory through action descriptions or spatial position cues. To support systematic training and evaluation, we curate two benchmarks covering diverse action and object categories across both human-object interaction and robotic manipulation scenarios. Extensive experiments demonstrate that our method achieves superior visual realism and controllability compared to existing baselines.
