- The Multilingual TEDx Corpus for Speech Recognition and Translation We present the Multilingual TEDx corpus, built to support speech recognition (ASR) and speech translation (ST) research across many non-English source languages. The corpus is a collection of audio recordings from TEDx talks in 8 source languages. We segment transcripts into sentences and align them to the source-language audio and target-language translations. The corpus is released along with open-sourced code enabling extension to new talks and languages as they become available. Our corpus creation methodology can be applied to more languages than previous work, and creates multi-way parallel evaluation sets. We provide baselines in multiple ASR and ST settings, including multilingual models to improve translation performance for low-resource language pairs. 8 authors · Feb 2, 2021
3 IndicGenBench: A Multilingual Benchmark to Evaluate Generation Capabilities of LLMs on Indic Languages As large language models (LLMs) see increasing adoption across the globe, it is imperative for LLMs to be representative of the linguistic diversity of the world. India is a linguistically diverse country of 1.4 Billion people. To facilitate research on multilingual LLM evaluation, we release IndicGenBench - the largest benchmark for evaluating LLMs on user-facing generation tasks across a diverse set 29 of Indic languages covering 13 scripts and 4 language families. IndicGenBench is composed of diverse generation tasks like cross-lingual summarization, machine translation, and cross-lingual question answering. IndicGenBench extends existing benchmarks to many Indic languages through human curation providing multi-way parallel evaluation data for many under-represented Indic languages for the first time. We evaluate a wide range of proprietary and open-source LLMs including GPT-3.5, GPT-4, PaLM-2, mT5, Gemma, BLOOM and LLaMA on IndicGenBench in a variety of settings. The largest PaLM-2 models performs the best on most tasks, however, there is a significant performance gap in all languages compared to English showing that further research is needed for the development of more inclusive multilingual language models. IndicGenBench is released at www.github.com/google-research-datasets/indic-gen-bench 5 authors · Apr 25, 2024 2