new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

FG-CXR: A Radiologist-Aligned Gaze Dataset for Enhancing Interpretability in Chest X-Ray Report Generation

Developing an interpretable system for generating reports in chest X-ray (CXR) analysis is becoming increasingly crucial in Computer-aided Diagnosis (CAD) systems, enabling radiologists to comprehend the decisions made by these systems. Despite the growth of diverse datasets and methods focusing on report generation, there remains a notable gap in how closely these models' generated reports align with the interpretations of real radiologists. In this study, we tackle this challenge by initially introducing Fine-Grained CXR (FG-CXR) dataset, which provides fine-grained paired information between the captions generated by radiologists and the corresponding gaze attention heatmaps for each anatomy. Unlike existing datasets that include a raw sequence of gaze alongside a report, with significant misalignment between gaze location and report content, our FG-CXR dataset offers a more grained alignment between gaze attention and diagnosis transcript. Furthermore, our analysis reveals that simply applying black-box image captioning methods to generate reports cannot adequately explain which information in CXR is utilized and how long needs to attend to accurately generate reports. Consequently, we propose a novel explainable radiologist's attention generator network (Gen-XAI) that mimics the diagnosis process of radiologists, explicitly constraining its output to closely align with both radiologist's gaze attention and transcript. Finally, we perform extensive experiments to illustrate the effectiveness of our method. Our datasets and checkpoint is available at https://github.com/UARK-AICV/FG-CXR.

  • 11 authors
·
Nov 22, 2024

ChildPlay: A New Benchmark for Understanding Children's Gaze Behaviour

Gaze behaviors such as eye-contact or shared attention are important markers for diagnosing developmental disorders in children. While previous studies have looked at some of these elements, the analysis is usually performed on private datasets and is restricted to lab settings. Furthermore, all publicly available gaze target prediction benchmarks mostly contain instances of adults, which makes models trained on them less applicable to scenarios with young children. In this paper, we propose the first study for predicting the gaze target of children and interacting adults. To this end, we introduce the ChildPlay dataset: a curated collection of short video clips featuring children playing and interacting with adults in uncontrolled environments (e.g. kindergarten, therapy centers, preschools etc.), which we annotate with rich gaze information. We further propose a new model for gaze target prediction that is geometrically grounded by explicitly identifying the scene parts in the 3D field of view (3DFoV) of the person, leveraging recent geometry preserving depth inference methods. Our model achieves state of the art results on benchmark datasets and ChildPlay. Furthermore, results show that looking at faces prediction performance on children is much worse than on adults, and can be significantly improved by fine-tuning models using child gaze annotations. Our dataset and models will be made publicly available.

  • 3 authors
·
Jul 4, 2023

RecGaze: The First Eye Tracking and User Interaction Dataset for Carousel Interfaces

Carousel interfaces are widely used in e-commerce and streaming services, but little research has been devoted to them. Previous studies of interfaces for presenting search and recommendation results have focused on single ranked lists, but it appears their results cannot be extrapolated to carousels due to the added complexity. Eye tracking is a highly informative approach to understanding how users click, yet there are no eye tracking studies concerning carousels. There are very few interaction datasets on recommenders with carousel interfaces and none that contain gaze data. We introduce the RecGaze dataset: the first comprehensive feedback dataset on carousels that includes eye tracking results, clicks, cursor movements, and selection explanations. The dataset comprises of interactions from 3 movie selection tasks with 40 different carousel interfaces per user. In total, 87 users and 3,477 interactions are logged. In addition to the dataset, its description and possible use cases, we provide results of a survey on carousel design and the first analysis of gaze data on carousels, which reveals a golden triangle or F-pattern browsing behavior. Our work seeks to advance the field of carousel interfaces by providing the first dataset with eye tracking results on carousels. In this manner, we provide and encourage an empirical understanding of interactions with carousel interfaces, for building better recommender systems through gaze information, and also encourage the development of gaze-based recommenders.

  • 7 authors
·
Apr 29, 2025

ChildPlay-Hand: A Dataset of Hand Manipulations in the Wild

Hand-Object Interaction (HOI) is gaining significant attention, particularly with the creation of numerous egocentric datasets driven by AR/VR applications. However, third-person view HOI has received less attention, especially in terms of datasets. Most third-person view datasets are curated for action recognition tasks and feature pre-segmented clips of high-level daily activities, leaving a gap for in-the-wild datasets. To address this gap, we propose ChildPlay-Hand, a novel dataset that includes person and object bounding boxes, as well as manipulation actions. ChildPlay-Hand is unique in: (1) providing per-hand annotations; (2) featuring videos in uncontrolled settings with natural interactions, involving both adults and children; (3) including gaze labels from the ChildPlay-Gaze dataset for joint modeling of manipulations and gaze. The manipulation actions cover the main stages of an HOI cycle, such as grasping, holding or operating, and different types of releasing. To illustrate the interest of the dataset, we study two tasks: object in hand detection (OiH), i.e. if a person has an object in their hand, and manipulation stages (ManiS), which is more fine-grained and targets the main stages of manipulation. We benchmark various spatio-temporal and segmentation networks, exploring body vs. hand-region information and comparing pose and RGB modalities. Our findings suggest that ChildPlay-Hand is a challenging new benchmark for modeling HOI in the wild.

  • 3 authors
·
Sep 14, 2024

Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction

Understanding drivers' decision-making is crucial for road safety. Although predicting the ego-vehicle's path is valuable for driver-assistance systems, existing methods mainly focus on external factors like other vehicles' motions, often neglecting the driver's attention and intent. To address this gap, we infer the ego-trajectory by integrating the driver's gaze and the surrounding scene. We introduce RouteFormer, a novel multimodal ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view, comprising first-person video and gaze fixations. We also present the Path Complexity Index (PCI), a new metric for trajectory complexity that enables a more nuanced evaluation of challenging scenarios. To tackle data scarcity and enhance diversity, we introduce GEM, a comprehensive dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data. Extensive evaluations on GEM and DR(eye)VE demonstrate that RouteFormer significantly outperforms state-of-the-art methods, achieving notable improvements in prediction accuracy across diverse conditions. Ablation studies reveal that incorporating driver field-of-view data yields significantly better average displacement error, especially in challenging scenarios with high PCI scores, underscoring the importance of modeling driver attention. All data and code are available at https://meakbiyik.github.io/routeformer.

  • 8 authors
·
Dec 13, 2023

I-AI: A Controllable & Interpretable AI System for Decoding Radiologists' Intense Focus for Accurate CXR Diagnoses

In the field of chest X-ray (CXR) diagnosis, existing works often focus solely on determining where a radiologist looks, typically through tasks such as detection, segmentation, or classification. However, these approaches are often designed as black-box models, lacking interpretability. In this paper, we introduce Interpretable Artificial Intelligence (I-AI) a novel and unified controllable interpretable pipeline for decoding the intense focus of radiologists in CXR diagnosis. Our I-AI addresses three key questions: where a radiologist looks, how long they focus on specific areas, and what findings they diagnose. By capturing the intensity of the radiologist's gaze, we provide a unified solution that offers insights into the cognitive process underlying radiological interpretation. Unlike current methods that rely on black-box machine learning models, which can be prone to extracting erroneous information from the entire input image during the diagnosis process, we tackle this issue by effectively masking out irrelevant information. Our proposed I-AI leverages a vision-language model, allowing for precise control over the interpretation process while ensuring the exclusion of irrelevant features. To train our I-AI model, we utilize an eye gaze dataset to extract anatomical gaze information and generate ground truth heatmaps. Through extensive experimentation, we demonstrate the efficacy of our method. We showcase that the attention heatmaps, designed to mimic radiologists' focus, encode sufficient and relevant information, enabling accurate classification tasks using only a portion of CXR. The code, checkpoints, and data are at https://github.com/UARK-AICV/IAI

  • 5 authors
·
Sep 24, 2023

Modeling Eye Gaze Velocity Trajectories using GANs with Spectral Loss for Enhanced Fidelity

Accurate modeling of eye gaze dynamics is essential for advancement in human-computer interaction, neurological diagnostics, and cognitive research. Traditional generative models like Markov models often fail to capture the complex temporal dependencies and distributional nuance inherent in eye gaze trajectories data. This study introduces a GAN framework employing LSTM and CNN generators and discriminators to generate high-fidelity synthetic eye gaze velocity trajectories. We conducted a comprehensive evaluation of four GAN architectures: CNN-CNN, LSTM-CNN, CNN-LSTM, and LSTM-LSTM trained under two conditions: using only adversarial loss and using a weighted combination of adversarial and spectral losses. Our findings reveal that the LSTM-CNN architecture trained with this new loss function exhibits the closest alignment to the real data distribution, effectively capturing both the distribution tails and the intricate temporal dependencies. The inclusion of spectral regularization significantly enhances the GANs ability to replicate the spectral characteristics of eye gaze movements, leading to a more stable learning process and improved data fidelity. Comparative analysis with an HMM optimized to four hidden states further highlights the advantages of the LSTM-CNN GAN. Statistical metrics show that the HMM-generated data significantly diverges from the real data in terms of mean, standard deviation, skewness, and kurtosis. In contrast, the LSTM-CNN model closely matches the real data across these statistics, affirming its capacity to model the complexity of eye gaze dynamics effectively. These results position the spectrally regularized LSTM-CNN GAN as a robust tool for generating synthetic eye gaze velocity data with high fidelity.

  • 6 authors
·
Dec 5, 2024

StreamGaze: Gaze-Guided Temporal Reasoning and Proactive Understanding in Streaming Videos

Streaming video understanding requires models not only to process temporally incoming frames, but also to anticipate user intention for realistic applications like AR glasses. While prior streaming benchmarks evaluate temporal reasoning, none measure whether MLLMs can interpret or leverage human gaze signals within a streaming setting. To fill this gap, we introduce StreamGaze, the first benchmark designed to evaluate how effectively MLLMs use gaze for temporal and proactive reasoning in streaming videos. StreamGaze introduces gaze-guided past, present, and proactive tasks that comprehensively evaluate streaming video understanding. These tasks assess whether models can use real-time gaze to follow shifting attention and infer user intentions from only past and currently observed frames. To build StreamGaze, we develop a gaze-video QA generation pipeline that aligns egocentric videos with raw gaze trajectories via fixation extraction, region-specific visual prompting, and scanpath construction. This pipeline produces spatio-temporally grounded QA pairs that closely reflect human perceptual dynamics. Across all StreamGaze tasks, we observe substantial performance gaps between state-of-the-art MLLMs and human performance, revealing fundamental limitations in gaze-based temporal reasoning, intention modeling, and proactive prediction. We further provide detailed analyses of gaze-prompting strategies, reasoning behaviors, and task-specific failure modes, offering deeper insight into why current MLLMs struggle and what capabilities future models must develop. All data and code will be publicly released to support continued research in gaze-guided streaming video understanding.

adobe-research Adobe Research
·
Dec 1, 2025 2

Domain-Adaptive Full-Face Gaze Estimation via Novel-View-Synthesis and Feature Disentanglement

Along with the recent development of deep neural networks, appearance-based gaze estimation has succeeded considerably when training and testing within the same domain. Compared to the within-domain task, the variance of different domains makes the cross-domain performance drop severely, preventing gaze estimation deployment in real-world applications. Among all the factors, ranges of head pose and gaze are believed to play a significant role in the final performance of gaze estimation, while collecting large ranges of data is expensive. This work proposes an effective model training pipeline consisting of a training data synthesis and a gaze estimation model for unsupervised domain adaptation. The proposed data synthesis leverages the single-image 3D reconstruction to expand the range of the head poses from the source domain without requiring a 3D facial shape dataset. To bridge the inevitable gap between synthetic and real images, we further propose an unsupervised domain adaptation method suitable for synthetic full-face data. We propose a disentangling autoencoder network to separate gaze-related features and introduce background augmentation consistency loss to utilize the characteristics of the synthetic source domain. Through comprehensive experiments, we show that the model only using monocular-reconstructed synthetic training data can perform comparably to real data with a large label range. Our proposed domain adaptation approach further improves the performance on multiple target domains. The code and data will be available at https://github.com/ut-vision/AdaptiveGaze.

  • 4 authors
·
May 25, 2023

Towards Pixel-Level Prediction for Gaze Following: Benchmark and Approach

Following the gaze of other people and analyzing the target they are looking at can help us understand what they are thinking, and doing, and predict the actions that may follow. Existing methods for gaze following struggle to perform well in natural scenes with diverse objects, and focus on gaze points rather than objects, making it difficult to deliver clear semantics and accurate scope of the targets. To address this shortcoming, we propose a novel gaze target prediction solution named GazeSeg, that can fully utilize the spatial visual field of the person as guiding information and lead to a progressively coarse-to-fine gaze target segmentation and recognition process. Specifically, a prompt-based visual foundation model serves as the encoder, working in conjunction with three distinct decoding modules (e.g. FoV perception, heatmap generation, and segmentation) to form the framework for gaze target prediction. Then, with the head bounding box performed as an initial prompt, GazeSeg obtains the FoV map, heatmap, and segmentation map progressively, leading to a unified framework for multiple tasks (e.g. direction estimation, gaze target segmentation, and recognition). In particular, to facilitate this research, we construct and release a new dataset, comprising 72k images with pixel-level annotations and 270 categories of gaze targets, built upon the GazeFollow dataset. The quantitative evaluation shows that our approach achieves the Dice of 0.325 in gaze target segmentation and 71.7% top-5 recognition. Meanwhile, our approach also outperforms previous state-of-the-art methods, achieving 0.953 in AUC on the gaze-following task. The dataset and code will be released.

  • 7 authors
·
Nov 29, 2024

Unveiling the Truth: Exploring Human Gaze Patterns in Fake Images

Creating high-quality and realistic images is now possible thanks to the impressive advancements in image generation. A description in natural language of your desired output is all you need to obtain breathtaking results. However, as the use of generative models grows, so do concerns about the propagation of malicious content and misinformation. Consequently, the research community is actively working on the development of novel fake detection techniques, primarily focusing on low-level features and possible fingerprints left by generative models during the image generation process. In a different vein, in our work, we leverage human semantic knowledge to investigate the possibility of being included in frameworks of fake image detection. To achieve this, we collect a novel dataset of partially manipulated images using diffusion models and conduct an eye-tracking experiment to record the eye movements of different observers while viewing real and fake stimuli. A preliminary statistical analysis is conducted to explore the distinctive patterns in how humans perceive genuine and altered images. Statistical findings reveal that, when perceiving counterfeit samples, humans tend to focus on more confined regions of the image, in contrast to the more dispersed observational pattern observed when viewing genuine images. Our dataset is publicly available at: https://github.com/aimagelab/unveiling-the-truth.

  • 4 authors
·
Mar 13, 2024

OAT: Object-Level Attention Transformer for Gaze Scanpath Prediction

Visual search is important in our daily life. The efficient allocation of visual attention is critical to effectively complete visual search tasks. Prior research has predominantly modelled the spatial allocation of visual attention in images at the pixel level, e.g. using a saliency map. However, emerging evidence shows that visual attention is guided by objects rather than pixel intensities. This paper introduces the Object-level Attention Transformer (OAT), which predicts human scanpaths as they search for a target object within a cluttered scene of distractors. OAT uses an encoder-decoder architecture. The encoder captures information about the position and appearance of the objects within an image and about the target. The decoder predicts the gaze scanpath as a sequence of object fixations, by integrating output features from both the encoder and decoder. We also propose a new positional encoding that better reflects spatial relationships between objects. We evaluated OAT on the Amazon book cover dataset and a new dataset for visual search that we collected. OAT's predicted gaze scanpaths align more closely with human gaze patterns, compared to predictions by algorithms based on spatial attention on both established metrics and a novel behavioural-based metric. Our results demonstrate the generalization ability of OAT, as it accurately predicts human scanpaths for unseen layouts and target objects.

  • 5 authors
·
Jul 18, 2024

Emotional Conversation: Empowering Talking Faces with Cohesive Expression, Gaze and Pose Generation

Vivid talking face generation holds immense potential applications across diverse multimedia domains, such as film and game production. While existing methods accurately synchronize lip movements with input audio, they typically ignore crucial alignments between emotion and facial cues, which include expression, gaze, and head pose. These alignments are indispensable for synthesizing realistic videos. To address these issues, we propose a two-stage audio-driven talking face generation framework that employs 3D facial landmarks as intermediate variables. This framework achieves collaborative alignment of expression, gaze, and pose with emotions through self-supervised learning. Specifically, we decompose this task into two key steps, namely speech-to-landmarks synthesis and landmarks-to-face generation. The first step focuses on simultaneously synthesizing emotionally aligned facial cues, including normalized landmarks that represent expressions, gaze, and head pose. These cues are subsequently reassembled into relocated facial landmarks. In the second step, these relocated landmarks are mapped to latent key points using self-supervised learning and then input into a pretrained model to create high-quality face images. Extensive experiments on the MEAD dataset demonstrate that our model significantly advances the state-of-the-art performance in both visual quality and emotional alignment.

  • 2 authors
·
Jun 12, 2024

EPFL-Smart-Kitchen-30: Densely annotated cooking dataset with 3D kinematics to challenge video and language models

Understanding behavior requires datasets that capture humans while carrying out complex tasks. The kitchen is an excellent environment for assessing human motor and cognitive function, as many complex actions are naturally exhibited in kitchens from chopping to cleaning. Here, we introduce the EPFL-Smart-Kitchen-30 dataset, collected in a noninvasive motion capture platform inside a kitchen environment. Nine static RGB-D cameras, inertial measurement units (IMUs) and one head-mounted HoloLens~2 headset were used to capture 3D hand, body, and eye movements. The EPFL-Smart-Kitchen-30 dataset is a multi-view action dataset with synchronized exocentric, egocentric, depth, IMUs, eye gaze, body and hand kinematics spanning 29.7 hours of 16 subjects cooking four different recipes. Action sequences were densely annotated with 33.78 action segments per minute. Leveraging this multi-modal dataset, we propose four benchmarks to advance behavior understanding and modeling through 1) a vision-language benchmark, 2) a semantic text-to-motion generation benchmark, 3) a multi-modal action recognition benchmark, 4) a pose-based action segmentation benchmark. We expect the EPFL-Smart-Kitchen-30 dataset to pave the way for better methods as well as insights to understand the nature of ecologically-valid human behavior. Code and data are available at https://github.com/amathislab/EPFL-Smart-Kitchen

  • 10 authors
·
Jun 2, 2025

DiffEye: Diffusion-Based Continuous Eye-Tracking Data Generation Conditioned on Natural Images

Numerous models have been developed for scanpath and saliency prediction, which are typically trained on scanpaths, which model eye movement as a sequence of discrete fixation points connected by saccades, while the rich information contained in the raw trajectories is often discarded. Moreover, most existing approaches fail to capture the variability observed among human subjects viewing the same image. They generally predict a single scanpath of fixed, pre-defined length, which conflicts with the inherent diversity and stochastic nature of real-world visual attention. To address these challenges, we propose DiffEye, a diffusion-based training framework designed to model continuous and diverse eye movement trajectories during free viewing of natural images. Our method builds on a diffusion model conditioned on visual stimuli and introduces a novel component, namely Corresponding Positional Embedding (CPE), which aligns spatial gaze information with the patch-based semantic features of the visual input. By leveraging raw eye-tracking trajectories rather than relying on scanpaths, DiffEye captures the inherent variability in human gaze behavior and generates high-quality, realistic eye movement patterns, despite being trained on a comparatively small dataset. The generated trajectories can also be converted into scanpaths and saliency maps, resulting in outputs that more accurately reflect the distribution of human visual attention. DiffEye is the first method to tackle this task on natural images using a diffusion model while fully leveraging the richness of raw eye-tracking data. Our extensive evaluation shows that DiffEye not only achieves state-of-the-art performance in scanpath generation but also enables, for the first time, the generation of continuous eye movement trajectories. Project webpage: https://diff-eye.github.io/

  • 3 authors
·
Sep 20, 2025

I-MPN: Inductive Message Passing Network for Efficient Human-in-the-Loop Annotation of Mobile Eye Tracking Data

Comprehending how humans process visual information in dynamic settings is crucial for psychology and designing user-centered interactions. While mobile eye-tracking systems combining egocentric video and gaze signals can offer valuable insights, manual analysis of these recordings is time-intensive. In this work, we present a novel human-centered learning algorithm designed for automated object recognition within mobile eye-tracking settings. Our approach seamlessly integrates an object detector with a spatial relation-aware inductive message-passing network (I-MPN), harnessing node profile information and capturing object correlations. Such mechanisms enable us to learn embedding functions capable of generalizing to new object angle views, facilitating rapid adaptation and efficient reasoning in dynamic contexts as users navigate their environment. Through experiments conducted on three distinct video sequences, our interactive-based method showcases significant performance improvements over fixed training/testing algorithms, even when trained on considerably smaller annotated samples collected through user feedback. Furthermore, we demonstrate exceptional efficiency in data annotation processes and surpass prior interactive methods that use complete object detectors, combine detectors with convolutional networks, or employ interactive video segmentation.

  • 8 authors
·
Jun 10, 2024

One Eye is All You Need: Lightweight Ensembles for Gaze Estimation with Single Encoders

Gaze estimation has grown rapidly in accuracy in recent years. However, these models often fail to take advantage of different computer vision (CV) algorithms and techniques (such as small ResNet and Inception networks and ensemble models) that have been shown to improve results for other CV problems. Additionally, most current gaze estimation models require the use of either both eyes or an entire face, whereas real-world data may not always have both eyes in high resolution. Thus, we propose a gaze estimation model that implements the ResNet and Inception model architectures and makes predictions using only one eye image. Furthermore, we propose an ensemble calibration network that uses the predictions from several individual architectures for subject-specific predictions. With the use of lightweight architectures, we achieve high performance on the GazeCapture dataset with very low model parameter counts. When using two eyes as input, we achieve a prediction error of 1.591 cm on the test set without calibration and 1.439 cm with an ensemble calibration model. With just one eye as input, we still achieve an average prediction error of 2.312 cm on the test set without calibration and 1.951 cm with an ensemble calibration model. We also notice significantly lower errors on the right eye images in the test set, which could be important in the design of future gaze estimation-based tools.

  • 3 authors
·
Nov 21, 2022

Aria Digital Twin: A New Benchmark Dataset for Egocentric 3D Machine Perception

We introduce the Aria Digital Twin (ADT) - an egocentric dataset captured using Aria glasses with extensive object, environment, and human level ground truth. This ADT release contains 200 sequences of real-world activities conducted by Aria wearers in two real indoor scenes with 398 object instances (324 stationary and 74 dynamic). Each sequence consists of: a) raw data of two monochrome camera streams, one RGB camera stream, two IMU streams; b) complete sensor calibration; c) ground truth data including continuous 6-degree-of-freedom (6DoF) poses of the Aria devices, object 6DoF poses, 3D eye gaze vectors, 3D human poses, 2D image segmentations, image depth maps; and d) photo-realistic synthetic renderings. To the best of our knowledge, there is no existing egocentric dataset with a level of accuracy, photo-realism and comprehensiveness comparable to ADT. By contributing ADT to the research community, our mission is to set a new standard for evaluation in the egocentric machine perception domain, which includes very challenging research problems such as 3D object detection and tracking, scene reconstruction and understanding, sim-to-real learning, human pose prediction - while also inspiring new machine perception tasks for augmented reality (AR) applications. To kick start exploration of the ADT research use cases, we evaluated several existing state-of-the-art methods for object detection, segmentation and image translation tasks that demonstrate the usefulness of ADT as a benchmarking dataset.

  • 9 authors
·
Jun 10, 2023

HD-EPIC: A Highly-Detailed Egocentric Video Dataset

We present a validation dataset of newly-collected kitchen-based egocentric videos, manually annotated with highly detailed and interconnected ground-truth labels covering: recipe steps, fine-grained actions, ingredients with nutritional values, moving objects, and audio annotations. Importantly, all annotations are grounded in 3D through digital twinning of the scene, fixtures, object locations, and primed with gaze. Footage is collected from unscripted recordings in diverse home environments, making HDEPIC the first dataset collected in-the-wild but with detailed annotations matching those in controlled lab environments. We show the potential of our highly-detailed annotations through a challenging VQA benchmark of 26K questions assessing the capability to recognise recipes, ingredients, nutrition, fine-grained actions, 3D perception, object motion, and gaze direction. The powerful long-context Gemini Pro only achieves 38.5% on this benchmark, showcasing its difficulty and highlighting shortcomings in current VLMs. We additionally assess action recognition, sound recognition, and long-term video-object segmentation on HD-EPIC. HD-EPIC is 41 hours of video in 9 kitchens with digital twins of 413 kitchen fixtures, capturing 69 recipes, 59K fine-grained actions, 51K audio events, 20K object movements and 37K object masks lifted to 3D. On average, we have 263 annotations per minute of our unscripted videos.

  • 19 authors
·
Feb 6, 2025

Eye, Robot: Learning to Look to Act with a BC-RL Perception-Action Loop

Humans do not passively observe the visual world -- we actively look in order to act. Motivated by this principle, we introduce EyeRobot, a robotic system with gaze behavior that emerges from the need to complete real-world tasks. We develop a mechanical eyeball that can freely rotate to observe its surroundings and train a gaze policy to control it using reinforcement learning. We accomplish this by first collecting teleoperated demonstrations paired with a 360 camera. This data is imported into a simulation environment that supports rendering arbitrary eyeball viewpoints, allowing episode rollouts of eye gaze on top of robot demonstrations. We then introduce a BC-RL loop to train the hand and eye jointly: the hand (BC) agent is trained from rendered eye observations, and the eye (RL) agent is rewarded when the hand produces correct action predictions. In this way, hand-eye coordination emerges as the eye looks towards regions which allow the hand to complete the task. EyeRobot implements a foveal-inspired policy architecture allowing high resolution with a small compute budget, which we find also leads to the emergence of more stable fixation as well as improved ability to track objects and ignore distractors. We evaluate EyeRobot on five panoramic workspace manipulation tasks requiring manipulation in an arc surrounding the robot arm. Our experiments suggest EyeRobot exhibits hand-eye coordination behaviors which effectively facilitate manipulation over large workspaces with a single camera. See project site for videos: https://www.eyerobot.net/

  • 8 authors
·
Jun 12, 2025

HOT3D: Hand and Object Tracking in 3D from Egocentric Multi-View Videos

We introduce HOT3D, a publicly available dataset for egocentric hand and object tracking in 3D. The dataset offers over 833 minutes (more than 3.7M images) of multi-view RGB/monochrome image streams showing 19 subjects interacting with 33 diverse rigid objects, multi-modal signals such as eye gaze or scene point clouds, as well as comprehensive ground-truth annotations including 3D poses of objects, hands, and cameras, and 3D models of hands and objects. In addition to simple pick-up/observe/put-down actions, HOT3D contains scenarios resembling typical actions in a kitchen, office, and living room environment. The dataset is recorded by two head-mounted devices from Meta: Project Aria, a research prototype of light-weight AR/AI glasses, and Quest 3, a production VR headset sold in millions of units. Ground-truth poses were obtained by a professional motion-capture system using small optical markers attached to hands and objects. Hand annotations are provided in the UmeTrack and MANO formats and objects are represented by 3D meshes with PBR materials obtained by an in-house scanner. In our experiments, we demonstrate the effectiveness of multi-view egocentric data for three popular tasks: 3D hand tracking, 6DoF object pose estimation, and 3D lifting of unknown in-hand objects. The evaluated multi-view methods, whose benchmarking is uniquely enabled by HOT3D, significantly outperform their single-view counterparts.

  • 14 authors
·
Nov 28, 2024

EgoMe: Follow Me via Egocentric View in Real World

When interacting with the real world, human often take the egocentric (first-person) view as a benchmark, naturally transferring behaviors observed from a exocentric (third-person) view to their own. This cognitive theory provides a foundation for researching how robots can more effectively imitate human behavior. However, current research either employs multiple cameras with different views focusing on the same individual's behavior simultaneously or encounters unpair ego-exo view scenarios, there is no effort to fully exploit human cognitive behavior in the real world. To fill this gap, in this paper, we introduce a novel large-scale egocentric dataset, called EgoMe, which towards following the process of human imitation learning via egocentric view in the real world. Our dataset includes 7902 pairs of videos (15804 videos) for diverse daily behaviors in real-world scenarios. For a pair of videos, one video captures a exocentric view of the imitator observing the demonstrator's actions, while the other captures a egocentric view of the imitator subsequently following those actions. Notably, our dataset also contain exo-ego eye gaze, angular velocity, acceleration, magnetic strength and other sensor multi-modal data for assisting in establishing correlations between observing and following process. In addition, we also propose eight challenging benchmark tasks for fully leveraging this data resource and promoting the research of robot imitation learning ability. Extensive statistical analysis demonstrates significant advantages compared to existing datasets. The proposed EgoMe dataset and benchmark will be released soon.

  • 6 authors
·
Jan 31, 2025