1 BACHI: Boundary-Aware Symbolic Chord Recognition Through Masked Iterative Decoding on Pop and Classical Music Automatic chord recognition (ACR) via deep learning models has gradually achieved promising recognition accuracy, yet two key challenges remain. First, prior work has primarily focused on audio-domain ACR, while symbolic music (e.g., score) ACR has received limited attention due to data scarcity. Second, existing methods still overlook strategies that are aligned with human music analytical practices. To address these challenges, we make two contributions: (1) we introduce POP909-CL, an enhanced version of POP909 dataset with tempo-aligned content and human-corrected labels of chords, beats, keys, and time signatures; and (2) We propose BACHI, a symbolic chord recognition model that decomposes the task into different decision steps, namely boundary detection and iterative ranking of chord root, quality, and bass (inversion). This mechanism mirrors the human ear-training practices. Experiments demonstrate that BACHI achieves state-of-the-art chord recognition performance on both classical and pop music benchmarks, with ablation studies validating the effectiveness of each module. UCSD · Oct 7, 2025 2
- Feature Learning for Chord Recognition: The Deep Chroma Extractor We explore frame-level audio feature learning for chord recognition using artificial neural networks. We present the argument that chroma vectors potentially hold enough information to model harmonic content of audio for chord recognition, but that standard chroma extractors compute too noisy features. This leads us to propose a learned chroma feature extractor based on artificial neural networks. It is trained to compute chroma features that encode harmonic information important for chord recognition, while being robust to irrelevant interferences. We achieve this by feeding the network an audio spectrum with context instead of a single frame as input. This way, the network can learn to selectively compensate noise and resolve harmonic ambiguities. We compare the resulting features to hand-crafted ones by using a simple linear frame-wise classifier for chord recognition on various data sets. The results show that the learned feature extractor produces superior chroma vectors for chord recognition. 2 authors · Dec 15, 2016
- Optical Music Recognition of Jazz Lead Sheets In this paper, we address the challenge of Optical Music Recognition (OMR) for handwritten jazz lead sheets, a widely used musical score type that encodes melody and chords. The task is challenging due to the presence of chords, a score component not handled by existing OMR systems, and the high variability and quality issues associated with handwritten images. Our contribution is two-fold. We present a novel dataset consisting of 293 handwritten jazz lead sheets of 163 unique pieces, amounting to 2021 total staves aligned with Humdrum **kern and MusicXML ground truth scores. We also supply synthetic score images generated from the ground truth. The second contribution is the development of an OMR model for jazz lead sheets. We discuss specific tokenisation choices related to our kind of data, and the advantages of using synthetic scores and pretrained models. We publicly release all code, data, and models. Pattern Recognition and Artificial Intelligence Group · Aug 31, 2025 1
1 Jointist: Joint Learning for Multi-instrument Transcription and Its Applications In this paper, we introduce Jointist, an instrument-aware multi-instrument framework that is capable of transcribing, recognizing, and separating multiple musical instruments from an audio clip. Jointist consists of the instrument recognition module that conditions the other modules: the transcription module that outputs instrument-specific piano rolls, and the source separation module that utilizes instrument information and transcription results. The instrument conditioning is designed for an explicit multi-instrument functionality while the connection between the transcription and source separation modules is for better transcription performance. Our challenging problem formulation makes the model highly useful in the real world given that modern popular music typically consists of multiple instruments. However, its novelty necessitates a new perspective on how to evaluate such a model. During the experiment, we assess the model from various aspects, providing a new evaluation perspective for multi-instrument transcription. We also argue that transcription models can be utilized as a preprocessing module for other music analysis tasks. In the experiment on several downstream tasks, the symbolic representation provided by our transcription model turned out to be helpful to spectrograms in solving downbeat detection, chord recognition, and key estimation. 8 authors · Jun 21, 2022
- OMAR-RQ: Open Music Audio Representation Model Trained with Multi-Feature Masked Token Prediction Developing open-source foundation models is essential for advancing research in music audio understanding and ensuring access to powerful, multipurpose representations for music information retrieval. We present OMAR-RQ, a model trained with self-supervision via masked token classification methodologies using a large-scale dataset with over 330,000 hours of music audio. We experiment with different input features and quantization options, and achieve state-of-the-art performance in music tagging, pitch estimation, chord recognition, beat tracking, segmentation, and difficulty estimation among open self-supervised models. We open-source our training and evaluation pipelines and model weights, available at https://github.com/mtg/omar-rq. 5 authors · Jul 4, 2025