new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 17

DimensionX: Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion

In this paper, we introduce DimensionX, a framework designed to generate photorealistic 3D and 4D scenes from just a single image with video diffusion. Our approach begins with the insight that both the spatial structure of a 3D scene and the temporal evolution of a 4D scene can be effectively represented through sequences of video frames. While recent video diffusion models have shown remarkable success in producing vivid visuals, they face limitations in directly recovering 3D/4D scenes due to limited spatial and temporal controllability during generation. To overcome this, we propose ST-Director, which decouples spatial and temporal factors in video diffusion by learning dimension-aware LoRAs from dimension-variant data. This controllable video diffusion approach enables precise manipulation of spatial structure and temporal dynamics, allowing us to reconstruct both 3D and 4D representations from sequential frames with the combination of spatial and temporal dimensions. Additionally, to bridge the gap between generated videos and real-world scenes, we introduce a trajectory-aware mechanism for 3D generation and an identity-preserving denoising strategy for 4D generation. Extensive experiments on various real-world and synthetic datasets demonstrate that DimensionX achieves superior results in controllable video generation, as well as in 3D and 4D scene generation, compared with previous methods.

  • 7 authors
·
Nov 7, 2024 4

Interactive3D: Create What You Want by Interactive 3D Generation

3D object generation has undergone significant advancements, yielding high-quality results. However, fall short of achieving precise user control, often yielding results that do not align with user expectations, thus limiting their applicability. User-envisioning 3D object generation faces significant challenges in realizing its concepts using current generative models due to limited interaction capabilities. Existing methods mainly offer two approaches: (i) interpreting textual instructions with constrained controllability, or (ii) reconstructing 3D objects from 2D images. Both of them limit customization to the confines of the 2D reference and potentially introduce undesirable artifacts during the 3D lifting process, restricting the scope for direct and versatile 3D modifications. In this work, we introduce Interactive3D, an innovative framework for interactive 3D generation that grants users precise control over the generative process through extensive 3D interaction capabilities. Interactive3D is constructed in two cascading stages, utilizing distinct 3D representations. The first stage employs Gaussian Splatting for direct user interaction, allowing modifications and guidance of the generative direction at any intermediate step through (i) Adding and Removing components, (ii) Deformable and Rigid Dragging, (iii) Geometric Transformations, and (iv) Semantic Editing. Subsequently, the Gaussian splats are transformed into InstantNGP. We introduce a novel (v) Interactive Hash Refinement module to further add details and extract the geometry in the second stage. Our experiments demonstrate that Interactive3D markedly improves the controllability and quality of 3D generation. Our project webpage is available at https://interactive-3d.github.io/.

  • 6 authors
·
Apr 25, 2024 1

Guide3D: Create 3D Avatars from Text and Image Guidance

Recently, text-to-image generation has exhibited remarkable advancements, with the ability to produce visually impressive results. In contrast, text-to-3D generation has not yet reached a comparable level of quality. Existing methods primarily rely on text-guided score distillation sampling (SDS), and they encounter difficulties in transferring 2D attributes of the generated images to 3D content. In this work, we aim to develop an effective 3D generative model capable of synthesizing high-resolution textured meshes by leveraging both textual and image information. To this end, we introduce Guide3D, a zero-shot text-and-image-guided generative model for 3D avatar generation based on diffusion models. Our model involves (1) generating sparse-view images of a text-consistent character using diffusion models, and (2) jointly optimizing multi-resolution differentiable marching tetrahedral grids with pixel-aligned image features. We further propose a similarity-aware feature fusion strategy for efficiently integrating features from different views. Moreover, we introduce two novel training objectives as an alternative to calculating SDS, significantly enhancing the optimization process. We thoroughly evaluate the performance and components of our framework, which outperforms the current state-of-the-art in producing topologically and structurally correct geometry and high-resolution textures. Guide3D enables the direct transfer of 2D-generated images to the 3D space. Our code will be made publicly available.

  • 5 authors
·
Aug 18, 2023

AnyControl: Create Your Artwork with Versatile Control on Text-to-Image Generation

The field of text-to-image (T2I) generation has made significant progress in recent years, largely driven by advancements in diffusion models. Linguistic control enables effective content creation, but struggles with fine-grained control over image generation. This challenge has been explored, to a great extent, by incorporating additional user-supplied spatial conditions, such as depth maps and edge maps, into pre-trained T2I models through extra encoding. However, multi-control image synthesis still faces several challenges. Specifically, current approaches are limited in handling free combinations of diverse input control signals, overlook the complex relationships among multiple spatial conditions, and often fail to maintain semantic alignment with provided textual prompts. This can lead to suboptimal user experiences. To address these challenges, we propose AnyControl, a multi-control image synthesis framework that supports arbitrary combinations of diverse control signals. AnyControl develops a novel Multi-Control Encoder that extracts a unified multi-modal embedding to guide the generation process. This approach enables a holistic understanding of user inputs, and produces high-quality, faithful results under versatile control signals, as demonstrated by extensive quantitative and qualitative evaluations. Our project page is available in https://any-control.github.io.

  • 5 authors
·
Jun 27, 2024

Gorgeous: Create Your Desired Character Facial Makeup from Any Ideas

Contemporary makeup transfer methods primarily focus on replicating makeup from one face to another, considerably limiting their use in creating diverse and creative character makeup essential for visual storytelling. Such methods typically fail to address the need for uniqueness and contextual relevance, specifically aligning with character and story settings as they depend heavily on existing facial makeup in reference images. This approach also presents a significant challenge when attempting to source a perfectly matched facial makeup style, further complicating the creation of makeup designs inspired by various story elements, such as theme, background, and props that do not necessarily feature faces. To address these limitations, we introduce Gorgeous, a novel diffusion-based makeup application method that goes beyond simple transfer by innovatively crafting unique and thematic facial makeup. Unlike traditional methods, Gorgeous does not require the presence of a face in the reference images. Instead, it draws artistic inspiration from a minimal set of three to five images, which can be of any type, and transforms these elements into practical makeup applications directly on the face. Our comprehensive experiments demonstrate that Gorgeous can effectively generate distinctive character facial makeup inspired by the chosen thematic reference images. This approach opens up new possibilities for integrating broader story elements into character makeup, thereby enhancing the narrative depth and visual impact in storytelling.

  • 2 authors
·
Apr 22, 2024

To Create What You Tell: Generating Videos from Captions

We are creating multimedia contents everyday and everywhere. While automatic content generation has played a fundamental challenge to multimedia community for decades, recent advances of deep learning have made this problem feasible. For example, the Generative Adversarial Networks (GANs) is a rewarding approach to synthesize images. Nevertheless, it is not trivial when capitalizing on GANs to generate videos. The difficulty originates from the intrinsic structure where a video is a sequence of visually coherent and semantically dependent frames. This motivates us to explore semantic and temporal coherence in designing GANs to generate videos. In this paper, we present a novel Temporal GANs conditioning on Captions, namely TGANs-C, in which the input to the generator network is a concatenation of a latent noise vector and caption embedding, and then is transformed into a frame sequence with 3D spatio-temporal convolutions. Unlike the naive discriminator which only judges pairs as fake or real, our discriminator additionally notes whether the video matches the correct caption. In particular, the discriminator network consists of three discriminators: video discriminator classifying realistic videos from generated ones and optimizes video-caption matching, frame discriminator discriminating between real and fake frames and aligning frames with the conditioning caption, and motion discriminator emphasizing the philosophy that the adjacent frames in the generated videos should be smoothly connected as in real ones. We qualitatively demonstrate the capability of our TGANs-C to generate plausible videos conditioning on the given captions on two synthetic datasets (SBMG and TBMG) and one real-world dataset (MSVD). Moreover, quantitative experiments on MSVD are performed to validate our proposal via Generative Adversarial Metric and human study.

  • 5 authors
·
Apr 23, 2018

Prototype Learning to Create Refined Interpretable Digital Phenotypes from ECGs

Prototype-based neural networks offer interpretable predictions by comparing inputs to learned, representative signal patterns anchored in training data. While such models have shown promise in the classification of physiological data, it remains unclear whether their prototypes capture an underlying structure that aligns with broader clinical phenotypes. We use a prototype-based deep learning model trained for multi-label ECG classification using the PTB-XL dataset. Then without modification we performed inference on the MIMIC-IV clinical database. We assess whether individual prototypes, trained solely for classification, are associated with hospital discharge diagnoses in the form of phecodes in this external population. Individual prototypes demonstrate significantly stronger and more specific associations with clinical outcomes compared to the classifier's class predictions, NLP-extracted concepts, or broader prototype classes across all phecode categories. Prototype classes with mixed significance patterns exhibit significantly greater intra-class distances (p < 0.0001), indicating the model learned to differentiate clinically meaningful variations within diagnostic categories. The prototypes achieve strong predictive performance across diverse conditions, with AUCs ranging from 0.89 for atrial fibrillation to 0.91 for heart failure, while also showing substantial signal for non-cardiac conditions such as sepsis and renal disease. These findings suggest that prototype-based models can support interpretable digital phenotyping from physiologic time-series data, providing transferable intermediate phenotypes that capture clinically meaningful physiologic signatures beyond their original training objectives.

  • 6 authors
·
Aug 2

TransMI: A Framework to Create Strong Baselines from Multilingual Pretrained Language Models for Transliterated Data

Transliterating related languages that use different scripts into a common script shows effectiveness in improving crosslingual transfer in downstream tasks. However, this methodology often makes pretraining a model from scratch unavoidable, as transliteration brings about new subwords not covered in existing multilingual pretrained language models (mPLMs). This is not desired because it takes a lot of computation budget for pretraining. A more promising way is to make full use of available mPLMs. To this end, this paper proposes a simple but effective framework: Transliterate-Merge-Initialize (TransMI), which can create a strong baseline well-suited for data that is transliterated into a common script by exploiting an mPLM and its accompanied tokenizer. TransMI has three stages: (a) transliterate the vocabulary of an mPLM into a common script; (b) merge the new vocabulary with the original vocabulary; and (c) initialize the embeddings of the new subwords. We applied TransMI to three recent strong mPLMs, and our experiments demonstrate that TransMI not only preserves their ability to handle non-transliterated data, but also enables the models to effectively process transliterated data: the results show a consistent improvement of 3% to 34%, varying across different models and tasks. We make our code and models publicly available at https://github.com/cisnlp/TransMI.

  • 4 authors
·
May 16, 2024

MeshAnything: Artist-Created Mesh Generation with Autoregressive Transformers

Recently, 3D assets created via reconstruction and generation have matched the quality of manually crafted assets, highlighting their potential for replacement. However, this potential is largely unrealized because these assets always need to be converted to meshes for 3D industry applications, and the meshes produced by current mesh extraction methods are significantly inferior to Artist-Created Meshes (AMs), i.e., meshes created by human artists. Specifically, current mesh extraction methods rely on dense faces and ignore geometric features, leading to inefficiencies, complicated post-processing, and lower representation quality. To address these issues, we introduce MeshAnything, a model that treats mesh extraction as a generation problem, producing AMs aligned with specified shapes. By converting 3D assets in any 3D representation into AMs, MeshAnything can be integrated with various 3D asset production methods, thereby enhancing their application across the 3D industry. The architecture of MeshAnything comprises a VQ-VAE and a shape-conditioned decoder-only transformer. We first learn a mesh vocabulary using the VQ-VAE, then train the shape-conditioned decoder-only transformer on this vocabulary for shape-conditioned autoregressive mesh generation. Our extensive experiments show that our method generates AMs with hundreds of times fewer faces, significantly improving storage, rendering, and simulation efficiencies, while achieving precision comparable to previous methods.

  • 12 authors
·
Jun 14, 2024 2

Not All Semantics are Created Equal: Contrastive Self-supervised Learning with Automatic Temperature Individualization

In this paper, we aim to optimize a contrastive loss with individualized temperatures in a principled and systematic manner for self-supervised learning. The common practice of using a global temperature parameter tau ignores the fact that ``not all semantics are created equal", meaning that different anchor data may have different numbers of samples with similar semantics, especially when data exhibits long-tails. First, we propose a new robust contrastive loss inspired by distributionally robust optimization (DRO), providing us an intuition about the effect of tau and a mechanism for automatic temperature individualization. Then, we propose an efficient stochastic algorithm for optimizing the robust contrastive loss with a provable convergence guarantee without using large mini-batch sizes. Theoretical and experimental results show that our algorithm automatically learns a suitable tau for each sample. Specifically, samples with frequent semantics use large temperatures to keep local semantic structures, while samples with rare semantics use small temperatures to induce more separable features. Our method not only outperforms prior strong baselines (e.g., SimCLR, CLIP) on unimodal and bimodal datasets with larger improvements on imbalanced data but also is less sensitive to hyper-parameters. To our best knowledge, this is the first methodical approach to optimizing a contrastive loss with individualized temperatures.

  • 6 authors
·
May 19, 2023

Not all tokens are created equal: Perplexity Attention Weighted Networks for AI generated text detection

The rapid advancement in large language models (LLMs) has significantly enhanced their ability to generate coherent and contextually relevant text, raising concerns about the misuse of AI-generated content and making it critical to detect it. However, the task remains challenging, particularly in unseen domains or with unfamiliar LLMs. Leveraging LLM next-token distribution outputs offers a theoretically appealing approach for detection, as they encapsulate insights from the models' extensive pre-training on diverse corpora. Despite its promise, zero-shot methods that attempt to operationalize these outputs have met with limited success. We hypothesize that one of the problems is that they use the mean to aggregate next-token distribution metrics across tokens, when some tokens are naturally easier or harder to predict and should be weighted differently. Based on this idea, we propose the Perplexity Attention Weighted Network (PAWN), which uses the last hidden states of the LLM and positions to weight the sum of a series of features based on metrics from the next-token distribution across the sequence length. Although not zero-shot, our method allows us to cache the last hidden states and next-token distribution metrics on disk, greatly reducing the training resource requirements. PAWN shows competitive and even better performance in-distribution than the strongest baselines (fine-tuned LMs) with a fraction of their trainable parameters. Our model also generalizes better to unseen domains and source models, with smaller variability in the decision boundary across distribution shifts. It is also more robust to adversarial attacks, and if the backbone has multilingual capabilities, it presents decent generalization to languages not seen during supervised training, with LLaMA3-1B reaching a mean macro-averaged F1 score of 81.46% in cross-validation with nine languages.

  • 4 authors
·
Jan 7

PassTSL: Modeling Human-Created Passwords through Two-Stage Learning

Textual passwords are still the most widely used user authentication mechanism. Due to the close connections between textual passwords and natural languages, advanced technologies in natural language processing (NLP) and machine learning (ML) could be used to model passwords for different purposes such as studying human password-creation behaviors and developing more advanced password cracking methods for informing better defence mechanisms. In this paper, we propose PassTSL (modeling human-created Passwords through Two-Stage Learning), inspired by the popular pretraining-finetuning framework in NLP and deep learning (DL). We report how different pretraining settings affected PassTSL and proved its effectiveness by applying it to six large leaked password databases. Experimental results showed that it outperforms five state-of-the-art (SOTA) password cracking methods on password guessing by a significant margin ranging from 4.11% to 64.69% at the maximum point. Based on PassTSL, we also implemented a password strength meter (PSM), and our experiments showed that it was able to estimate password strength more accurately, causing fewer unsafe errors (overestimating the password strength) than two other SOTA PSMs when they produce the same rate of safe errors (underestimating the password strength): a neural-network based method and zxcvbn. Furthermore, we explored multiple finetuning settings, and our evaluations showed that, even a small amount of additional training data, e.g., only 0.1% of the pretrained data, can lead to over 3% improvement in password guessing on average. We also proposed a heuristic approach to selecting finetuning passwords based on JS (Jensen-Shannon) divergence and experimental results validated its usefulness. In summary, our contributions demonstrate the potential and feasibility of applying advanced NLP and ML methods to password modeling and cracking.

  • 5 authors
·
Jul 19, 2024

DatasetEquity: Are All Samples Created Equal? In The Quest For Equity Within Datasets

Data imbalance is a well-known issue in the field of machine learning, attributable to the cost of data collection, the difficulty of labeling, and the geographical distribution of the data. In computer vision, bias in data distribution caused by image appearance remains highly unexplored. Compared to categorical distributions using class labels, image appearance reveals complex relationships between objects beyond what class labels provide. Clustering deep perceptual features extracted from raw pixels gives a richer representation of the data. This paper presents a novel method for addressing data imbalance in machine learning. The method computes sample likelihoods based on image appearance using deep perceptual embeddings and clustering. It then uses these likelihoods to weigh samples differently during training with a proposed Generalized Focal Loss function. This loss can be easily integrated with deep learning algorithms. Experiments validate the method's effectiveness across autonomous driving vision datasets including KITTI and nuScenes. The loss function improves state-of-the-art 3D object detection methods, achieving over 200% AP gains on under-represented classes (Cyclist) in the KITTI dataset. The results demonstrate the method is generalizable, complements existing techniques, and is particularly beneficial for smaller datasets and rare classes. Code is available at: https://github.com/towardsautonomy/DatasetEquity

  • 4 authors
·
Aug 18, 2023

JaColBERTv2.5: Optimising Multi-Vector Retrievers to Create State-of-the-Art Japanese Retrievers with Constrained Resources

Neural Information Retrieval has advanced rapidly in high-resource languages, but progress in lower-resource ones such as Japanese has been hindered by data scarcity, among other challenges. Consequently, multilingual models have dominated Japanese retrieval, despite their computational inefficiencies and inability to capture linguistic nuances. While recent multi-vector monolingual models like JaColBERT have narrowed this gap, they still lag behind multilingual methods in large-scale evaluations. This work addresses the suboptimal training methods of multi-vector retrievers in lower-resource settings, focusing on Japanese. We systematically evaluate and improve key aspects of the inference and training settings of JaColBERT, and more broadly, multi-vector models. We further enhance performance through a novel checkpoint merging step, showcasing it to be an effective way of combining the benefits of fine-tuning with the generalization capabilities of the original checkpoint. Building on our analysis, we introduce a novel training recipe, resulting in the JaColBERTv2.5 model. JaColBERTv2.5, with only 110 million parameters and trained in under 15 hours on 4 A100 GPUs, significantly outperforms all existing methods across all common benchmarks, reaching an average score of 0.754, significantly above the previous best of 0.720. To support future research, we make our final models, intermediate checkpoints and all data used publicly available.

  • 1 authors
·
Jul 30, 2024 2

The Generative AI Paradox: "What It Can Create, It May Not Understand"

The recent wave of generative AI has sparked unprecedented global attention, with both excitement and concern over potentially superhuman levels of artificial intelligence: models now take only seconds to produce outputs that would challenge or exceed the capabilities even of expert humans. At the same time, models still show basic errors in understanding that would not be expected even in non-expert humans. This presents us with an apparent paradox: how do we reconcile seemingly superhuman capabilities with the persistence of errors that few humans would make? In this work, we posit that this tension reflects a divergence in the configuration of intelligence in today's generative models relative to intelligence in humans. Specifically, we propose and test the Generative AI Paradox hypothesis: generative models, having been trained directly to reproduce expert-like outputs, acquire generative capabilities that are not contingent upon -- and can therefore exceed -- their ability to understand those same types of outputs. This contrasts with humans, for whom basic understanding almost always precedes the ability to generate expert-level outputs. We test this hypothesis through controlled experiments analyzing generation vs. understanding in generative models, across both language and image modalities. Our results show that although models can outperform humans in generation, they consistently fall short of human capabilities in measures of understanding, as well as weaker correlation between generation and understanding performance, and more brittleness to adversarial inputs. Our findings support the hypothesis that models' generative capability may not be contingent upon understanding capability, and call for caution in interpreting artificial intelligence by analogy to human intelligence.

  • 14 authors
·
Oct 31, 2023 5

Beyond Technical Debt: How AI-Assisted Development Creates Comprehension Debt in Resource-Constrained Indie Teams

Junior indie game developers in distributed, part-time teams lack production frameworks suited to their specific context, as traditional methodologies are often inaccessible. This study introduces the CIGDI (Co-Intelligence Game Development Ideation) Framework, an alternative approach for integrating AI tools to address persistent challenges of technical debt, coordination, and burnout. The framework emerged from a three-month reflective practice and autoethnographic study of a three-person distributed team developing the 2D narrative game "The Worm's Memoirs". Based on analysis of development data (N=157 Jira tasks, N=333 GitHub commits, N=13+ Miro boards, N=8 reflection sessions), CIGDI is proposed as a seven-stage iterative process structured around human-in-the-loop decision points (Priority Criteria and Timeboxing). While AI support democratized knowledge access and reduced cognitive load, our analysis identified a significant challenge: "comprehension debt." We define this as a novel form of technical debt where AI helps teams build systems more sophisticated than their independent skill level can create or maintain. This paradox (possessing functional systems the team incompletely understands) creates fragility and AI dependency, distinct from traditional code quality debt. This work contributes a practical production framework for resource-constrained teams and identifies critical questions about whether AI assistance constitutes a learning ladder or a dependency trap for developer skill.

  • 1 authors
·
Oct 30 1

HQ-CLIP: Leveraging Large Vision-Language Models to Create High-Quality Image-Text Datasets and CLIP Models

Large-scale but noisy image-text pair data have paved the way for the success of Contrastive Language-Image Pretraining (CLIP). As the foundation vision encoder, CLIP in turn serves as the cornerstone for most large vision-language models (LVLMs). This interdependence naturally raises an interesting question: Can we reciprocally leverage LVLMs to enhance the quality of image-text pair data, thereby opening the possibility of a self-reinforcing cycle for continuous improvement? In this work, we take a significant step toward this vision by introducing an LVLM-driven data refinement pipeline. Our framework leverages LVLMs to process images and their raw alt-text, generating four complementary textual formulas: long positive descriptions, long negative descriptions, short positive tags, and short negative tags. Applying this pipeline to the curated DFN-Large dataset yields VLM-150M, a refined dataset enriched with multi-grained annotations. Based on this dataset, we further propose a training paradigm that extends conventional contrastive learning by incorporating negative descriptions and short tags as additional supervised signals. The resulting model, namely HQ-CLIP, demonstrates remarkable improvements across diverse benchmarks. Within a comparable training data scale, our approach achieves state-of-the-art performance in zero-shot classification, cross-modal retrieval, and fine-grained visual understanding tasks. In retrieval benchmarks, HQ-CLIP even surpasses standard CLIP models trained on the DFN-2B dataset, which contains 10times more training data than ours. All code, data, and models are available at https://zxwei.site/hqclip.

  • 7 authors
·
Jul 30 1

I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors

Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALLcdotE 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models.Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task . To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task.

  • 7 authors
·
May 24, 2023