Papers
arxiv:2512.16602

Refusal Steering: Fine-grained Control over LLM Refusal Behaviour for Sensitive Topics

Published on Dec 18
Authors:
,
,

Abstract

Refusal Steering uses an LLM-as-a-judge to control a model's refusal behavior on politically sensitive topics without retraining, improving safety and maintaining performance.

AI-generated summary

We introduce Refusal Steering, an inference-time method to exercise fine-grained control over Large Language Models refusal behaviour on politically sensitive topics without retraining. We replace fragile pattern-based refusal detection with an LLM-as-a-judge that assigns refusal confidence scores and we propose a ridge-regularized variant to compute steering vectors that better isolate the refusal--compliance direction. On Qwen3-Next-80B-A3B-Thinking, our method removes the refusal behaviour of the model around politically sensitive topics while maintaining safety on JailbreakBench and near-baseline performance on general benchmarks. The approach generalizes across 4B and 80B models and can also induce targeted refusals when desired. We analize the steering vectors and show that refusal signals concentrate in deeper layers of the transformer and are distributed across many dimensions. Together, these results demonstrate that activation steering can remove political refusal behaviour while retaining safety alignment for harmful content, offering a practical path to controllable, transparent moderation at inference time.

Community

Sign up or log in to comment

Models citing this paper 1

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2512.16602 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2512.16602 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.