Vietoris--Rips Shadow for Euclidean Graph Reconstruction
Abstract
Shadow projections of Vietoris--Rips complexes under path-based metrics preserve homotopy types and enable geometric reconstruction of planar graphs from sampled data.
The shadow of an abstract simplicial complex K with vertices in R^N is a subset of R^N defined as the union of the convex hulls of simplices of K. The Vietoris--Rips complex of a metric space (S,d) at scale β is an abstract simplicial complex whose each k-simplex corresponds to (k+1) points of S within diameter β. In case Ssubsetmathbb R^2 and d(a,b)=|a-b| the standard Euclidean metric, the natural shadow projection of the Vietoris--Rips complex is already proved by Chambers et al. to induce isomorphisms on π_0 and π_1. We extend the result beyond the standard Euclidean distance on Ssubsetmathbb R^N to a family of path-based metrics, d^varepsilon_{S}. From the pairwise Euclidean distances of points in S, we introduce a family (parametrized by varepsilon) of path-based Vietoris--Rips complexes R^varepsilon_β(S) for a scale β>0. If SsubsetR^2 is Hausdorff-close to a planar Euclidean graph G, we provide quantitative bounds on scales β,varepsilon for the shadow projection map of the Vietoris--Rips complex of (S,d^varepsilon_S) at scale β to induce π_1-isomorphism. This paper first studies the homotopy-type recovery of Gsubsetmathbb R^N using the abstract Vietoris--Rips complex of a Hausdorff-close sample S under the d^varepsilon_S metric. Then, our result on the π_1-isomorphism induced by the shadow projection lends itself to providing also a geometrically close embedding for the reconstruction. Based on the length of the shortest loop and large-scale distortion of the embedding of G, we quantify the choice of a suitable sample density varepsilon and a scale β at which the shadow of R^varepsilon_β(S) is homotopy-equivalent and Hausdorff-close to G.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper