# Venomoussaversai — Particle Manipulation integration scaffold # Paste your particle-manipulation function into `particle_step` below. # This code simulates signals, applies the algorithm, trains a small mapper, # and saves a model representing "your" pattern space. import numpy as np import pickle from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # ---------- PLACEHOLDER: insert your particle algorithm here ---------- # Example interface: def particle_step(state: np.ndarray, input_vec: np.ndarray) -> np.ndarray # The function should take a current particle state and an input vector, and return updated state. def particle_step(state: np.ndarray, input_vec: np.ndarray) -> np.ndarray: # --- REPLACE THIS WITH YOUR ALGORITHM --- # tiny example: weighted update with tanh nonlinearity W = np.sin(np.arange(state.size) + 1.0) # placeholder weights new = np.tanh(state * 0.9 + input_vec.dot(W) * 0.1) return new # -------------------------------------------------------------------- class ParticleManipulator: def __init__(self, dim=64): self.dim = dim # initial particle states (can be randomized or seeded from your profile) self.state = np.random.randn(dim) * 0.01 def step(self, input_vec): # ensure input vector length compatibility inp = np.asarray(input_vec).ravel() if inp.size == 0: inp = np.zeros(self.dim) # broadcast or pad/truncate to dim if inp.size < self.dim: x = np.pad(inp, (0, self.dim - inp.size)) else: x = inp[:self.dim] self.state = particle_step(self.state, x) return self.state # ---------- Simple signal simulator ---------- def simulate_signals(n_samples=500, dim=16, n_classes=4, noise=0.05, seed=0): rng = np.random.RandomState(seed) X = [] y = [] for cls in range(n_classes): base = rng.randn(dim) * (0.5 + cls*0.2) + cls*0.7 for i in range(n_samples // n_classes): sample = base + rng.randn(dim) * noise X.append(sample) y.append(cls) return np.array(X), np.array(y) # ---------- Build dataset by running particle manipulator ---------- def build_dataset(manip, raw_X): features = [] for raw in raw_X: st = manip.step(raw) # run particle update feat = st.copy()[:manip.dim] # derive features (you can add spectral transforms) features.append(feat) return np.array(features) # ---------- Training pipeline ---------- if __name__ == "__main__": # simulate raw sensor inputs (replace simulate_signals with real EEG/ECG files if available) raw_X, y = simulate_signals(n_samples=800, dim=32, n_classes=4) manip = ParticleManipulator(dim=32) X = build_dataset(manip, raw_X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) clf = RandomForestClassifier(n_estimators=100, random_state=42) clf.fit(X_train, y_train) preds = clf.predict(X_test) print("Accuracy:", accuracy_score(y_test, preds)) # Save the trained model + manipulator state as your "mind snapshot" artifact = { "model": clf, "particle_state": manip.state, "meta": {"owner": "Ananthu Sajeev", "artifact_type": "venomous_mind_snapshot_v1"} } with open("venomous_mind_snapshot.pkl", "wb") as f: pickle.dump(artifact, f) print("Saved venomous_mind_snapshot.pkl — this file is your digital pattern snapshot.")