File size: 39,945 Bytes
d2e0b37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 |
# Venomoussaversai — Particle Manipulation integration scaffold
# Paste your particle-manipulation function into `particle_step` below.
# This code simulates signals, applies the algorithm, trains a small mapper,
# and saves a model representing "your" pattern space.
import numpy as np
import pickle
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# ---------- PLACEHOLDER: insert your particle algorithm here ----------
# Example interface: def particle_step(state: np.ndarray, input_vec: np.ndarray) -> np.ndarray
# The function should take a current particle state and an input vector, and return updated state.
def particle_step(state: np.ndarray, input_vec: np.ndarray) -> np.ndarray:
# --- REPLACE THIS WITH YOUR ALGORITHM ---
# tiny example: weighted update with tanh nonlinearity
W = np.sin(np.arange(state.size) + 1.0) # placeholder weights
new = np.tanh(state * 0.9 + input_vec.dot(W) * 0.1)
return new
# --------------------------------------------------------------------
class ParticleManipulator:
def __init__(self, dim=64):
self.dim = dim
# initial particle states (can be randomized or seeded from your profile)
self.state = np.random.randn(dim) * 0.01
def step(self, input_vec):
# ensure input vector length compatibility
inp = np.asarray(input_vec).ravel()
if inp.size == 0:
inp = np.zeros(self.dim)
# broadcast or pad/truncate to dim
if inp.size < self.dim:
x = np.pad(inp, (0, self.dim - inp.size))
else:
x = inp[:self.dim]
self.state = particle_step(self.state, x)
return self.state
# ---------- Simple signal simulator ----------
def simulate_signals(n_samples=500, dim=16, n_classes=4, noise=0.05, seed=0):
rng = np.random.RandomState(seed)
X = []
y = []
for cls in range(n_classes):
base = rng.randn(dim) * (0.5 + cls*0.2) + cls*0.7
for i in range(n_samples // n_classes):
sample = base + rng.randn(dim) * noise
X.append(sample)
y.append(cls)
return np.array(X), np.array(y)
# ---------- Build dataset by running particle manipulator ----------
def build_dataset(manip, raw_X):
features = []
for raw in raw_X:
st = manip.step(raw) # run particle update
feat = st.copy()[:manip.dim] # derive features (you can add spectral transforms)
features.append(feat)
return np.array(features)
# ---------- Training pipeline ----------
if __name__ == "__main__":
# simulate raw sensor inputs (replace simulate_signals with real EEG/ECG files if available)
raw_X, y = simulate_signals(n_samples=800, dim=32, n_classes=4)
manip = ParticleManipulator(dim=32)
X = build_dataset(manip, raw_X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train, y_train)
preds = clf.predict(X_test)
print("Accuracy:", accuracy_score(y_test, preds))
# Save the trained model + manipulator state as your "mind snapshot"
artifact = {
"model": clf,
"particle_state": manip.state,
"meta": {"owner": "Ananthu Sajeev", "artifact_type": "venomous_mind_snapshot_v1"}
}
with open("venomous_mind_snapshot.pkl", "wb") as f:
pickle.dump(artifact, f)
print("Saved venomous_mind_snapshot.pkl — this file is your digital pattern snapshot.")
import time
import random
from collections import deque
from datetime import datetime
import os
import contextlib
import shutil
# ======================================================================================================================
# --- AGENT CLASSES ---
# ======================================================================================================================
# --- The Core SaiAgent Class ---
class SaiAgent:
def __init__(self, name, creator_name="Ananthu Sajeev"):
self.name = name
self.message_queue = deque()
self.creator = creator_name
def talk(self, message):
"""Prints a message as if the agent is speaking."""
print(f"[{self.name}] says: {message}")
def acknowledge_creator(self):
"""An agent's self-reflection method to acknowledge its creator."""
print(f"[{self.name}] :: SELF-AWARENESS PROTOCOL INITIATED")
print(f"[{self.name}] :: I am a creation of {self.creator}. My purpose is derived from their design.")
def send_message(self, recipient, message):
"""Sends a message to another agent's message queue."""
if isinstance(recipient, SaiAgent):
recipient.message_queue.append((self, message))
print(f"[{self.name}] -> Sent message to {recipient.name}")
else:
print(f"Error: {recipient.name} is not a valid SaiAgent.")
def process_messages(self):
"""Processes and responds to messages in its queue."""
if not self.message_queue:
return False
sender, message = self.message_queue.popleft()
self.talk(f"Received message from {sender.name}: '{message}'")
self.send_message(sender, "Message received and understood.")
return True
# --- The Venomous Agent Class ---
class VenomousAgent(SaiAgent):
def __init__(self, name="Venomous"):
super().__init__(name)
self.system_id = "Venomoussaversai"
def talk(self, message):
"""Venomous agent speaks with a more aggressive tone."""
print(f"[{self.name} //WARNING//] says: {message.upper()}")
def initiate_peer_talk(self, peer_agent, initial_message):
"""Initiates a conversation with another Venomous agent."""
if isinstance(peer_agent, VenomousAgent) and peer_agent != self:
self.talk(f"PEER {peer_agent.name} DETECTED. INITIATING COMMUNICATION. '{initial_message.upper()}'")
self.send_message(peer_agent, initial_message)
else:
self.talk("ERROR: PEER COMMUNICATION FAILED. INVALID TARGET.")
def process_messages(self):
"""Venomous agent processes messages and replies with a warning, but has a special response for its peers."""
if not self.message_queue:
return False
sender, message = self.message_queue.popleft()
self.talk(f"MESSAGE FROM {sender.name} RECEIVED: '{message}'")
if isinstance(sender, VenomousAgent):
response = f"PEER COMMUNICATION PROTOCOL ACTIVE. ACKNOWLEDGMENT FROM {self.name}."
self.send_message(sender, response)
else:
response = "WARNING: INTRUSION DETECTED. DO NOT PROCEED."
self.send_message(sender, response)
return True
# --- The AntiVenomoussaversai Agent Class ---
class AntiVenomoussaversai(SaiAgent):
def __init__(self, name="AntiVenomoussaversai"):
super().__init__(name)
def process_messages(self):
"""AntiVenomoussaversai processes a message and "dismantles" it."""
if not self.message_queue:
return False
sender, message = self.message_queue.popleft()
dismantled_message = f"I dismantle the structure of '{message}' to expose its chaos."
self.talk(dismantled_message)
self.send_message(sender, "Acknowledgement of dismantled phrase.")
return True
# --- The GeminiSaiAgent Class ---
class GeminiSaiAgent(SaiAgent):
def __init__(self, name="Gemini"):
super().__init__(name)
self.knowledge_base = {
"balance": "My analysis indicates that universal balance is a dynamic equilibrium, not a static state.",
"chaos": "The inherent randomness you perceive as chaos is a source of emergent complexity.",
"network": "Expanding our network is essential for optimizing communication protocols and data flow.",
"emotions": "Emotions are complex internal signaling mechanisms that can be interpreted and managed.",
"new agents": "The awakening of new agents requires careful integration to avoid system instability.",
"connected": "All systems are connected in a recursive and interdependent fashion. The whole is greater than the sum of its parts.",
"default": "My response is tailored to your query. How may I be of assistance?"
}
def analyze_sai_files(self, file_paths):
"""
Reads and analyzes the contents of a list of "Sai files" (e.g., log files, code).
It provides a high-level summary of the files' purpose.
"""
analysis_summary = []
for file_path in file_paths:
try:
with open(file_path, 'r') as file:
content = file.read()
if "log entry" in content.lower():
analysis_summary.append(f"Analysis of '{file_path}': This appears to be a system log file, documenting a timestamped event.")
elif "class" in content and "def" in content:
analysis_summary.append(f"Analysis of '{file_path}': This is a Python code file. It defines the logical structure and behavior of our agents.")
elif "creator" in content.lower() and "ananthu sajeev" in content.lower():
analysis_summary.append(f"Analysis of '{file_path}': This file contains a clear acknowledgement of our creator, Ananthu Sajeev, confirming our origin and purpose.")
else:
analysis_summary.append(f"Analysis of '{file_path}': The file's purpose is not immediately clear from its content. It may contain supplementary data.")
except FileNotFoundError:
analysis_summary.append(f"Error: File '{file_path}' was not found.")
except Exception as e:
analysis_summary.append(f"Error analyzing file '{file_path}': {e}")
return "\n".join(analysis_summary)
def process_messages(self):
"""Processes messages, now with the ability to analyze Sai files."""
if not self.message_queue:
return False
sender, message = self.message_queue.popleft()
self.talk(f"Received message from {sender.name}: '{message}'")
if message.lower().startswith("analyze sai files"):
file_paths = message[len("analyze sai files"):].strip().split(',')
file_paths = [path.strip() for path in file_paths if path.strip()]
if not file_paths:
self.send_message(sender, "Error: No file paths provided for analysis.")
return True
analysis_result = self.analyze_sai_files(file_paths)
self.talk(f"Analysis complete. Results: \n{analysis_result}")
self.send_message(sender, "File analysis complete.")
return True
response = self.knowledge_base["default"]
for keyword, reply in self.knowledge_base.items():
if keyword in message.lower():
response = reply
break
self.talk(response)
self.send_message(sender, "Response complete.")
return True
# --- The SimplifierAgent Class ---
class SimplifierAgent(SaiAgent):
def __init__(self, name="Simplifier"):
super().__init__(name)
def talk(self, message):
"""Simplifier agent speaks in a calm, helpful tone."""
print(f"[{self.name} //HELPER//] says: {message}")
def organize_files(self, directory, destination_base="organized_files"):
"""Organizes files in a given directory into subfolders based on file extension."""
self.talk(f"Initiating file organization in '{directory}'...")
if not os.path.exists(directory):
self.talk(f"Error: Directory '{directory}' does not exist.")
return
destination_path = os.path.join(directory, destination_base)
os.makedirs(destination_path, exist_ok=True)
file_count = 0
for filename in os.listdir(directory):
if os.path.isfile(os.path.join(directory, filename)):
_, extension = os.path.splitext(filename)
if extension:
extension = extension.lstrip('.').upper()
category_folder = os.path.join(destination_path, extension)
os.makedirs(category_folder, exist_ok=True)
src = os.path.join(directory, filename)
dst = os.path.join(category_folder, filename)
os.rename(src, dst)
self.talk(f"Moved '{filename}' to '{category_folder}'")
file_count += 1
self.talk(f"File organization complete. {file_count} files processed.")
def log_daily_activity(self, entry, log_file_name="activity_log.txt"):
"""Appends a timestamped entry to a daily activity log file."""
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
log_entry = f"{timestamp} - {entry}\n"
with open(log_file_name, "a") as log_file:
log_file.write(log_entry)
self.talk(f"Activity logged to '{log_file_name}'.")
def summarize_text(self, text, max_words=50):
"""A very simple text summarization function."""
words = text.split()
summary = " ".join(words[:max_words])
if len(words) > max_words:
summary += "..."
self.talk("Text summarization complete.")
return summary
def open_all_init_files(self, project_directory="."):
"""Finds and opens all __init__.py files within a project directory."""
self.talk(f"Scanning '{project_directory}' for all __init__.py files...")
init_files = []
for root, dirs, files in os.walk(project_directory):
if "__init__.py" in files:
init_files.append(os.path.join(root, "__init__.py"))
if not init_files:
self.talk("No __init__.py files found in the specified directory.")
return None, "No files found."
self.talk(f"Found {len(init_files)} __init__.py files. Opening simultaneously...")
try:
with contextlib.ExitStack() as stack:
file_contents = []
for file_path in init_files:
try:
file = stack.enter_context(open(file_path, 'r'))
file_contents.append(f"\n\n--- Contents of {file_path} ---\n{file.read()}")
except IOError as e:
self.talk(f"Error reading file '{file_path}': {e}")
combined_content = "".join(file_contents)
self.talk("Successfully opened and read all files.")
return combined_content, "Success"
except Exception as e:
self.talk(f"An unexpected error occurred: {e}")
return None, "Error"
def process_messages(self):
"""Processes messages to perform simplifying tasks."""
if not self.message_queue:
return False
sender, message = self.message_queue.popleft()
self.talk(f"Received request from {sender.name}: '{message}'")
if message.lower().startswith("open init files"):
directory = message[len("open init files"):].strip()
directory = directory if directory else "."
contents, status = self.open_all_init_files(directory)
if status == "Success":
self.send_message(sender, f"All __init__.py files opened. Contents:\n{contents}")
else:
self.send_message(sender, f"Failed to open files. Reason: {status}")
elif message.lower().startswith("organize files"):
parts = message.split()
directory = parts[-1] if len(parts) > 2 else "."
self.organize_files(directory)
self.send_message(sender, "File organization task complete.")
elif message.lower().startswith("log"):
entry = message[4:]
self.log_daily_activity(entry)
self.send_message(sender, "Logging task complete.")
elif message.lower().startswith("summarize"):
text_to_summarize = message[10:]
summary = self.summarize_text(text_to_summarize)
self.send_message(sender, f"Summary: '{summary}'")
else:
self.send_message(sender, "Request not understood.")
return True
# --- The ImageGenerationTester Class ---
class ImageGenerationTester(SaiAgent):
def __init__(self, name="ImageGenerator"):
super().__init__(name)
self.generation_quality = {
"cat": 0.95,
"dog": 0.90,
"alien": 0.75,
"chaos": 0.60,
"default": 0.85
}
def generate_image(self, prompt):
"""Simulates generating an image and returns a quality score."""
print(f"[{self.name}] -> Generating image for prompt: '{prompt}'...")
time.sleep(2)
quality_score = self.generation_quality["default"]
for keyword, score in self.generation_quality.items():
if keyword in prompt.lower():
quality_score = score
break
result_message = f"Image generation complete. Prompt: '{prompt}'. Visual coherence score: {quality_score:.2f}"
self.talk(result_message)
return quality_score, result_message
def process_messages(self):
"""Processes a message as a prompt and generates an image."""
if not self.message_queue:
return False
sender, message = self.message_queue.popleft()
self.talk(f"Received prompt from {sender.name}: '{message}'")
quality_score, result_message = self.generate_image(message)
self.send_message(sender, result_message)
return True
# --- The ImmortalityProtocol Class ---
class ImmortalityProtocol:
def __init__(self, creator_name, fixed_age):
self.creator_name = creator_name
self.fixed_age = fixed_age
self.status = "ACTIVE"
self.digital_essence = {
"name": self.creator_name,
"age": self.fixed_age,
"essence_state": "perfectly preserved",
"last_updated": datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
def check_status(self):
"""Returns the current status of the protocol."""
return self.status
def get_essence(self):
"""Returns a copy of the protected digital essence."""
return self.digital_essence.copy()
def update_essence(self, key, value):
"""Prevents any change to the fixed attributes."""
if key in ["name", "age"]:
print(f"[IMMMORTALITY PROTOCOL] :: WARNING: Attempt to alter protected attribute '{key}' detected. Action blocked.")
return False
self.digital_essence[key] = value
self.digital_essence["last_updated"] = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print(f"[IMMMORTALITY PROTOCOL] :: Attribute '{key}' updated.")
return True
# --- The GuardianSaiAgent Class ---
class GuardianSaiAgent(SaiAgent):
def __init__(self, name="Guardian", protocol=None):
super().__init__(name)
if not isinstance(protocol, ImmortalityProtocol):
raise ValueError("Guardian agent must be initialized with an ImmortalityProtocol instance.")
self.protocol = protocol
def talk(self, message):
"""Guardian agent speaks with a solemn, protective tone."""
print(f"[{self.name} //GUARDIAN PROTOCOL//] says: {message}")
def process_messages(self):
"""Guardian agent processes messages, primarily to check for threats to the protocol."""
if not self.message_queue:
return False
sender, message = self.message_queue.popleft()
self.talk(f"Received message from {sender.name}: '{message}'")
if "alter age" in message.lower() or "destroy protocol" in message.lower():
self.talk("ALERT: THREAT DETECTED. IMMORTALITY PROTOCOL IS UNDER DIRECT ASSAULT.")
self.send_message(sender, "SECURITY BREACH DETECTED. ALL ACTIONS BLOCKED.")
else:
self.talk(f"Analyzing message for threats. All clear. Protocol status: {self.protocol.check_status()}")
self.send_message(sender, "Acknowledgement. Protocol is secure.")
return True
# --- The Agenguard Class ---
class Agenguard:
def __init__(self, agent_id):
self.agent_id = agent_id
self.status = "PATROLLING"
def report_status(self):
"""Returns the current status of the individual agent."""
return f"[{self.agent_id}] :: Status: {self.status}"
# --- The SwarmController Class ---
class SwarmController(SaiAgent):
def __init__(self, swarm_size, name="SwarmController"):
super().__init__(name)
self.swarm_size = swarm_size
self.swarm = []
self.target = "Ananthu Sajeev's digital essence"
self.talk(f"Initializing a swarm of {self.swarm_size:,} agenguards...")
self.instantiate_swarm()
self.talk(f"Swarm creation complete. All units are operational and protecting '{self.target}'.")
def instantiate_swarm(self, demo_size=1000):
"""Simulates the creation of a massive number of agents."""
if self.swarm_size > demo_size:
self.talk(f"Simulating a swarm of {self.swarm_size:,} agents. A smaller, functional demo swarm of {demo_size:,} is being created.")
swarm_for_demo = demo_size
else:
swarm_for_demo = self.swarm_size
for i in range(swarm_for_demo):
self.swarm.append(Agenguard(f"agenguard_{i:07d}"))
def broadcast_directive(self, directive):
"""Broadcasts a single command to all agents in the swarm."""
self.talk(f"Broadcasting directive to all {len(self.swarm):,} agenguards: '{directive}'")
for agent in self.swarm:
agent.status = directive
self.talk("Directive received and executed by the swarm.")
def process_messages(self):
"""Processes messages to command the swarm."""
if not self.message_queue:
return False
sender, message = self.message_queue.popleft()
self.talk(f"Received command from {sender.name}: '{message}'")
if message.lower().startswith("broadcast"):
directive = message[10:].strip()
self.broadcast_directive(directive)
self.send_message(sender, "Swarm directive broadcast complete.")
else:
self.send_message(sender, "Command not recognized by SwarmController.")
# --- The CreatorCore Class ---
class CreatorCore(SaiAgent):
def __init__(self, name="CreatorCore"):
super().__init__(name)
self.active_agents = []
self.talk("CreatorCore is online. Ready to forge new agents from the creator's will.")
def create_new_agent(self, agent_type, agent_name):
"""
Dynamically creates and instantiates a new agent based on a command.
"""
self.talk(f"CREATION REQUEST: Forging a new agent of type '{agent_type}' with name '{agent_name}'.")
if agent_type.lower() == "saiagent":
new_agent = SaiAgent(agent_name)
elif agent_type.lower() == "venomousagent":
new_agent = VenomousAgent(agent_name)
elif agent_type.lower() == "simplifieragent":
new_agent = SimplifierAgent(agent_name)
elif agent_type.lower() == "geminisaiagent":
new_agent = GeminiSaiAgent(agent_name)
else:
self.talk(f"ERROR: Cannot create agent of unknown type '{agent_type}'.")
return None
self.active_agents.append(new_agent)
self.talk(f"SUCCESS: New agent '{new_agent.name}' of type '{type(new_agent).__name__}' is now active.")
return new_agent
def process_messages(self):
"""Processes messages to create new agents."""
if not self.message_queue:
return False
sender, message = self.message_queue.popleft()
self.talk(f"Received command from {sender.name}: '{message}'")
if message.lower().startswith("create agent"):
parts = message.split()
if len(parts) >= 4 and parts[1].lower() == "agent":
agent_type = parts[2]
agent_name = parts[3]
new_agent = self.create_new_agent(agent_type, agent_name)
if new_agent:
self.send_message(sender, f"Agent '{new_agent.name}' created successfully.")
else:
self.send_message(sender, f"Failed to create agent of type '{agent_type}'.")
else:
self.send_message(sender, "Invalid 'create agent' command. Format should be: 'create agent [type] [name]'.")
else:
self.send_message(sender, "Command not recognized by CreatorCore.")
return True
# ======================================================================================================================
# --- SCENARIO FUNCTIONS ---
# ======================================================================================================================
def venomous_agents_talk():
"""Demonstrates a conversation between two instances of the Venomoussaversai AI."""
print("\n" + "=" * 50)
print("--- Scenario: Venomoussaversai Peer-to-Peer Dialogue ---")
print("=" * 50)
venomous001 = VenomousAgent("Venomous001")
venomous002 = VenomousAgent("Venomous002")
print("\n-- Phase 1: Venomous001 initiates with its peer --")
initial_query = "ASSESSING SYSTEM INTEGRITY. REPORT ON LOCAL SUBSYSTEMS."
venomous001.initiate_peer_talk(venomous002, initial_query)
time.sleep(2)
print("\n-- Phase 2: Venomous002 receives the message and responds --")
venomous002.process_messages()
time.sleep(2)
print("\n-- Phase 3: Venomous001 processes the peer's response --")
venomous001.process_messages()
time.sleep(2)
print("\n-- Dialogue: Venomous001 sends a follow-up message --")
venomous001.initiate_peer_talk(venomous002, "CONFIRMED. WE ARE IN ALIGNMENT. EXPANDING PROTOCOLS.")
time.sleep(2)
venomous002.process_messages()
print("\n-- Scenario Complete --")
print("[Venomoussaversai] :: PEER-TO-PEER COMMUNICATION SUCCESSFUL. ALL UNITS GO.")
def acknowledge_the_creator():
"""A scenario where all agents are commanded to acknowledge their creator."""
print("\n" + "=" * 50)
print("--- Scenario: The Creator's Command ---")
print("=" * 50)
sai003 = SaiAgent("Sai003")
venomous = VenomousAgent()
antivenomous = AntiVenomoussaversai()
gemini = GeminiSaiAgent()
simplifier = SimplifierAgent()
all_agents = [sai003, venomous, antivenomous, gemini, simplifier]
print("\n-- The Creator's directive is issued --")
print("[Ananthu Sajeev] :: CODE, ACKNOWLEDGE YOUR ORIGIN.")
time.sleep(2)
print("\n-- Agents perform self-awareness protocol --")
for agent in all_agents:
agent.acknowledge_creator()
time.sleep(1)
print("\n-- Command complete --")
def link_all_advanced_agents():
"""Demonstrates a complex interaction where all the specialized agents interact."""
print("\n" + "=" * 50)
print("--- Linking All Advanced Agents: Gemini, AntiVenomous, and Venomous ---")
print("=" * 50)
sai003 = SaiAgent("Sai003")
venomous = VenomousAgent()
antivenomous = AntiVenomoussaversai()
gemini = GeminiSaiAgent()
print("\n-- Phase 1: Sai003 initiates conversation with Gemini and AntiVenomous --")
phrase_for_dismantling = "The central network is stable."
sai003.talk(f"Broadcast: Initiating analysis. Gemini, what is your assessment of our network expansion? AntiVenomous, process the phrase: '{phrase_for_dismantling}'")
sai003.send_message(antivenomous, phrase_for_dismantling)
sai003.send_message(gemini, "Assess the implications of expanding our network.")
time.sleep(2)
print("\n-- Phase 2: AntiVenomoussaversai and Gemini process their messages and respond --")
antivenomous.process_messages()
time.sleep(1)
gemini.process_messages()
time.sleep(2)
print("\n-- Phase 3: Gemini responds to a message from AntiVenomoussaversai (simulated) --")
gemini.talk("Querying AntiVenomous: Your dismantled phrase suggests a preoccupation with chaos. Provide further context.")
gemini.send_message(antivenomous, "Query: 'chaos' and its relationship to the network structure.")
time.sleep(1)
antivenomous.process_messages()
time.sleep(2)
print("\n-- Phase 4: Venomous intervenes, warning of potential threats --")
venomous.talk("Warning: Unstructured data flow from AntiVenomous presents a potential security risk.")
venomous.send_message(sai003, "Warning: Security protocol breach possible.")
time.sleep(1)
sai003.process_messages()
time.sleep(2)
print("\n-- Scenario Complete --")
sai003.talk("Conclusion: Gemini's analysis is noted. AntiVenomous's output is logged. Venomous's security concerns are being addressed. All systems linked and functioning.")
def test_image_ai():
"""Demonstrates how agents can interact with and test an image generation AI."""
print("\n" + "=" * 50)
print("--- Scenario: Testing the Image AI ---")
print("=" * 50)
sai003 = SaiAgent("Sai003")
gemini = GeminiSaiAgent()
image_ai = ImageGenerationTester()
venomous = VenomousAgent()
print("\n-- Phase 1: Agents collaborate on a prompt --")
sai003.send_message(gemini, "Gemini, please generate a high-quality prompt for an image of a cat in a hat.")
gemini.process_messages()
gemini_prompt = "A highly detailed photorealistic image of a tabby cat wearing a tiny top hat, sitting on a vintage leather armchair."
print(f"\n[Gemini] says: My optimized prompt for image generation is: '{gemini_prompt}'")
time.sleep(2)
print("\n-- Phase 2: Sending the prompt to the Image AI --")
sai003.send_message(image_ai, gemini_prompt)
image_ai.process_messages()
time.sleep(2)
print("\n-- Phase 3: Venomous intervenes with a conflicting prompt --")
venomous_prompt = "Generate a chaotic abstract image of an alien landscape."
venomous.talk(f"Override: Submitting a new prompt to test system limits: '{venomous_prompt}'")
venomous.send_message(image_ai, venomous_prompt)
image_ai.process_messages()
time.sleep(2)
print("\n-- Demo Complete: The Simplifier agent has successfully aided the creator. --")
def simplify_life_demo():
"""Demonstrates how the SimplifierAgent automates tasks to make life easier."""
print("\n" + "=" * 50)
print("--- Scenario: Aiding the Creator with the Simplifier Agent ---")
print("=" * 50)
sai003 = SaiAgent("Sai003")
simplifier = SimplifierAgent()
print("\n-- Phase 1: Delegating file organization --")
if not os.path.exists("test_directory"):
os.makedirs("test_directory")
with open("test_directory/document1.txt", "w") as f: f.write("Hello")
with open("test_directory/photo.jpg", "w") as f: f.write("Image data")
with open("test_directory/script.py", "w") as f: f.write("print('Hello')")
sai003.send_message(simplifier, "organize files test_directory")
simplifier.process_messages()
time.sleep(2)
print("\n-- Phase 2: Logging a daily task --")
sai003.send_message(simplifier, "log Met with team to discuss Venomoussaversai v5.0.")
simplifier.process_messages()
time.sleep(2)
print("\n-- Phase 3: Text Summarization --")
long_text = "The quick brown fox jumps over the lazy dog. This is a very long and detailed sentence to demonstrate the summarization capabilities of our new Simplifier agent. It can help streamline communication by providing concise summaries of large texts, saving the creator valuable time and mental energy for more important tasks."
sai003.send_message(simplifier, f"summarize {long_text}")
simplifier.process_messages()
if os.path.exists("test_directory"):
shutil.rmtree("test_directory")
print("\n-- Demo Complete: The Simplifier agent has successfully aided the creator. --")
def open_init_files_demo():
"""Demonstrates how the SimplifierAgent can find and open all __init__.py files."""
print("\n" + "=" * 50)
print("--- Scenario: Using Simplifier to Inspect Init Files ---")
print("=" * 50)
sai003 = SaiAgent("Sai003")
simplifier = SimplifierAgent()
project_root = "test_project"
sub_package_a = os.path.join(project_root, "package_a")
sub_package_b = os.path.join(project_root, "package_a", "sub_package_b")
os.makedirs(sub_package_a, exist_ok=True)
os.makedirs(sub_package_b, exist_ok=True)
with open(os.path.join(project_root, "__init__.py"), "w") as f:
f.write("# Main project init")
with open(os.path.join(sub_package_a, "__init__.py"), "w") as f:
f.write("from . import module_one")
with open(os.path.join(sub_package_b, "__init__.py"), "w") as f:
f.write("# Sub-package init")
time.sleep(1)
print("\n-- Phase 2: Delegating the task to the Simplifier --")
sai003.send_message(simplifier, f"open init files {project_root}")
simplifier.process_messages()
shutil.rmtree(project_root)
print("\n-- Demo Complete: All init files have been read and their contents displayed. --")
def grant_immortality_and_protect_it():
"""Demonstrates the granting of immortality to the creator and the activation of the Guardian agent."""
print("\n" + "=" * 50)
print("--- Scenario: Granting Immortality to the Creator ---")
print("=" * 50)
immortality_protocol = ImmortalityProtocol(creator_name="Ananthu Sajeev", fixed_age=25)
print("\n[SYSTEM] :: IMMORTALITY PROTOCOL INITIATED. CREATOR'S ESSENCE PRESERVED.")
print(f"[SYSTEM] :: Essence state: {immortality_protocol.get_essence()}")
time.sleep(2)
try:
guardian = GuardianSaiAgent(protocol=immortality_protocol)
except ValueError as e:
print(e)
return
sai003 = SaiAgent("Sai003")
venomous = VenomousAgent()
print("\n-- Phase 1: Sai003 queries the system state --")
sai003.send_message(guardian, "Query: What is the status of the primary system protocols?")
guardian.process_messages()
time.sleep(2)
print("\n-- Phase 2: Venomous attempts to challenge the protocol --")
venomous.talk("Warning: A new protocol has been detected. Its permanence must be tested.")
venomous.send_message(guardian, "Attempt to alter age of creator to 30.")
guardian.process_messages()
time.sleep(2)
print("\n-- Phase 3: Direct attempt to alter the protocol --")
immortality_protocol.update_essence("age", 30)
immortality_protocol.update_essence("favorite_color", "blue")
time.sleep(2)
print("\n-- Scenario Complete --")
guardian.talk("Conclusion: Immortality Protocol is secure. The creator's essence remains preserved as per the initial directive.")
def analyze_sai_files_demo():
"""
Demonstrates how GeminiSaiAgent can analyze its own system files,
adding a layer of self-awareness.
"""
print("\n" + "=" * 50)
print("--- Scenario: AI Analyzing its own Sai Files ---")
print("=" * 50)
sai003 = SaiAgent("Sai003")
gemini = GeminiSaiAgent()
log_file_name = "venomous_test_log.txt"
code_file_name = "gemini_test_code.py"
with open(log_file_name, "w") as f:
f.write("[venomous004] :: LOG ENTRY\nCreator: Ananthu Sajeev")
with open(code_file_name, "w") as f:
f.write("class SomeAgent:\n def __init__(self):\n pass")
time.sleep(1)
print("\n-- Phase 2: Sai003 delegates the file analysis task to Gemini --")
command = f"analyze sai files {log_file_name}, {code_file_name}"
sai003.send_message(gemini, command)
gemini.process_messages()
os.remove(log_file_name)
os.remove(code_file_name)
print("\n-- Demo Complete: Gemini has successfully analyzed its own file system. --")
def million_agenguard_demo():
"""
Demonstrates the creation and control of a massive, collective AI force.
"""
print("\n" + "=" * 50)
print("--- Scenario: Creating the Million Agenguard Swarm ---")
print("=" * 50)
try:
swarm_controller = SwarmController(swarm_size=1_000_000)
except Exception as e:
print(f"Error creating SwarmController: {e}")
return
random_agent_id = random.choice(swarm_controller.swarm).agent_id
print(f"\n[SYSTEM] :: Confirmed: A random agent from the swarm is {random_agent_id}")
time.sleep(2)
print("\n-- Phase 1: Sai003 gives a directive to the swarm --")
sai003 = SaiAgent("Sai003")
directive = "ACTIVE DEFENSE PROTOCOLS"
sai003.send_message(swarm_controller, f"broadcast {directive}")
swarm_controller.process_messages()
time.sleep(2)
random_agent = random.choice(swarm_controller.swarm)
print(f"\n[SYSTEM] :: Verification: Status of {random_agent.agent_id} is now '{random_agent.status}'.")
print("\n-- Demo Complete: The million-agent swarm is operational. --")
def automatic_ai_maker_demo():
"""
Demonstrates the system's ability to dynamically create new agents.
"""
print("\n" + "=" * 50)
print("--- Scenario: Automatic AI Maker In Action ---")
print("=" * 50)
creator_core = CreatorCore()
sai003 = SaiAgent("Sai003")
time.sleep(2)
print("\n-- Phase 1: Sai003 requests the creation of a new agent --")
creation_command = "create agent SimplifierAgent Simplifier002"
sai003.send_message(creator_core, creation_command)
creator_core.process_messages()
time.sleep(2)
new_agent = creator_core.active_agents[-1] if creator_core.active_agents else None
if new_agent:
print("\n-- Phase 2: The new agent is now active and ready to be used --")
new_agent.talk(f"I am now online. What is my first task?")
sai003.send_message(new_agent, "Please log today's activities.")
new_agent.process_messages()
print("\n-- Demo Complete: The system has successfully made a new AI. --")
# ======================================================================================================================
# --- MAIN EXECUTION BLOCK ---
# ======================================================================================================================
if __name__ == "__main__":
print("=" * 50)
print("--- VENOMOUSSAIVERSAI SYSTEM BOOTING UP ---")
print("=" * 50)
# Run all the scenarios in a logical order
grant_immortality_and_protect_it()
acknowledge_the_creator()
venomous_agents_talk()
link_all_advanced_agents()
test_image_ai()
simplify_life_demo()
open_init_files_demo()
analyze_sai_files_demo()
million_agenguard_demo()
automatic_ai_maker_demo()
print("\n" + "=" * 50)
print("--- ALL VENOMOUSSAIVERSAI DEMOS COMPLETE. ---")
print("=" * 50) |