Update README.md
Browse files
README.md
CHANGED
|
@@ -42,17 +42,17 @@ Huggingface [04/25/2025] via https://huggingface.co/nvidia/OpenCode-Nemotron-14B
|
|
| 42 |
|
| 43 |
|
| 44 |
## Input
|
| 45 |
-
**Input Type(s):** Text <br>
|
| 46 |
-
**Input Format(s):** String <br>
|
| 47 |
-
**Input Parameters:** One-Dimensional (1D) <br>
|
| 48 |
-
**Other Properties Related to Input:** Context length up to 32,768 tokens <br>
|
| 49 |
|
| 50 |
|
| 51 |
## Output
|
| 52 |
-
**Output Type(s):** Text <br>
|
| 53 |
-
**Output Format:** String <br>
|
| 54 |
-
**Output Parameters:** One-Dimensional (1D) <br>
|
| 55 |
-
**Other Properties Related to Output:** Context length up to 32,768 tokens <br>
|
| 56 |
|
| 57 |
Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. <br>
|
| 58 |
|
|
@@ -93,8 +93,8 @@ We used the datasets listed in the next section to evaluate OpenCodeReasoning-32
|
|
| 93 |
|
| 94 |
|
| 95 |
## Inference
|
| 96 |
-
**Engine:** vLLM <br>
|
| 97 |
-
**Test Hardware** NVIDIA H100-80GB <br>
|
| 98 |
|
| 99 |
|
| 100 |
## Ethical Considerations:
|
|
|
|
| 42 |
|
| 43 |
|
| 44 |
## Input
|
| 45 |
+
- **Input Type(s):** Text <br>
|
| 46 |
+
- **Input Format(s):** String <br>
|
| 47 |
+
- **Input Parameters:** One-Dimensional (1D) <br>
|
| 48 |
+
- **Other Properties Related to Input:** Context length up to 32,768 tokens <br>
|
| 49 |
|
| 50 |
|
| 51 |
## Output
|
| 52 |
+
- **Output Type(s):** Text <br>
|
| 53 |
+
- **Output Format:** String <br>
|
| 54 |
+
- **Output Parameters:** One-Dimensional (1D) <br>
|
| 55 |
+
- **Other Properties Related to Output:** Context length up to 32,768 tokens <br>
|
| 56 |
|
| 57 |
Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. <br>
|
| 58 |
|
|
|
|
| 93 |
|
| 94 |
|
| 95 |
## Inference
|
| 96 |
+
- **Engine:** vLLM <br>
|
| 97 |
+
- **Test Hardware** NVIDIA H100-80GB <br>
|
| 98 |
|
| 99 |
|
| 100 |
## Ethical Considerations:
|