marvingoenner commited on
Commit
1133e6b
·
verified ·
1 Parent(s): b84e2ba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -172
README.md CHANGED
@@ -1,199 +1,91 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
 
73
 
74
- [More Information Needed]
75
 
76
  ## Training Details
 
 
 
 
 
 
 
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
 
 
198
 
199
- [More Information Needed]
 
1
  ---
2
+ language: en
3
+ license: apache-2.0
4
+ tags:
5
+ - summarization
6
+ - conversational-ai
7
+ - text2text-generation
8
+ - t5
9
+ datasets:
10
+ - knkarthick/samsum
11
+ metrics:
12
+ - rouge
13
+ base_model:
14
+ - google-t5/t5-small
15
  ---
16
 
17
+ # 470 Final Project Model -> Summary Model
18
 
19
+ ## Model Overview
20
+ This repository contains a fine-tuned **T5-small** model for **abstractive conversational text summarization**.
21
+ Given a multi-speaker dialogue, the model generates a concise natural-language summary that captures the main points of the conversation.
22
 
23
+ - **Base model:** google-t5/t5-small
24
+ - **Task:** Abstractive text summarization
25
+ - **Model type:** Encoder–decoder transformer (T5)
26
 
27
+ ---
28
 
29
+ ## Dataset
30
+ The model was fine-tuned on the **SAMSum** dataset, which consists of chat-style conversations paired with human-written summaries.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ - **Dataset name:** knkarthick/samsum
33
+ - **Fields:**
34
+ - `dialogue`: conversation text (input)
35
+ - `summary`: reference summary (target)
36
+ - **Splits:** train / validation / test
37
 
38
+ ---
39
 
40
  ## Training Details
41
+ - **Epochs:** 3
42
+ - **Learning rate:** 3e-4
43
+ - **Batch size:** 8
44
+ - **Max input length:** 512 tokens
45
+ - **Max target length:** 128 tokens
46
+ - **Training framework:** Hugging Face Transformers (`Seq2SeqTrainer`)
47
+ - **Hardware:** GPU (Google Colab)
48
 
49
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
  ## Evaluation
52
+ The model was evaluated on the test split of the SAMSum dataset using ROUGE metrics.
53
 
54
+ - **ROUGE-1:** INSERT_YOUR_VALUE
55
+ - **ROUGE-2:** INSERT_YOUR_VALUE
56
+ - **ROUGE-L:** INSERT_YOUR_VALUE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
+ (Replace the values with the scores obtained in the notebook.)
59
 
60
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
+ ## Intended Uses
63
+ This model can be used for:
64
+ - Summarizing chat conversations or dialogues
65
+ - Demonstrations of abstractive summarization
66
+ - Educational purposes in NLP and machine learning
67
 
68
+ ---
69
 
70
+ ## Limitations
71
+ - The model may omit important details in long or complex conversations.
72
+ - Generated summaries may occasionally be imprecise or incomplete.
73
+ - The model is trained on informal dialogue and may not generalize well to other domains.
74
 
75
+ ---
76
 
77
+ ## How to Use
78
 
79
+ ```python
80
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
81
 
82
+ repo_id = "marvingoenner/470finalprojectmodel"
83
 
84
+ tokenizer = AutoTokenizer.from_pretrained(repo_id)
85
+ model = AutoModelForSeq2SeqLM.from_pretrained(repo_id)
86
 
87
+ dialogue = "Amanda: I baked cookies. Jerry: Sounds great! Amanda: I will bring some tomorrow."
88
+ inputs = tokenizer("summarize: " + dialogue, return_tensors="pt", truncation=True)
89
+ output_ids = model.generate(**inputs, max_new_tokens=64)
90
 
91
+ print(tokenizer.decode(output_ids[0], skip_special_tokens=True))