set -x meta_lst=$1 output_dir=$2 dataset_lst=$3 checkpoint_path=wavlm_large_finetune.pth wav_wav_text=$output_dir/wav_res_ref_text score_file=$output_dir/wav_res_ref_text.wer python3 get_wav_res_ref_text.py $meta_lst $output_dir $dataset_lst $wav_wav_text workdir=$(cd $(dirname $0); pwd) cd $workdir/thirdparty/UniSpeech/downstreams/speaker_verification/ # 单进程运行 temp_result_file=$output_dir/temp_sim_result.out python3 verification_pair_list_v2.py $wav_wav_text \ --model_name wavlm_large \ --checkpoint $checkpoint_path \ --scores $temp_result_file \ --wav1_start_sr 0 \ --wav2_start_sr 0 \ --wav1_end_sr -1 \ --wav2_end_sr -1 \ --device cuda:0 # 过滤掉 "avg score" 行并计算平均分数 temp_clean_file=$output_dir/temp_sim_clean.out grep -v "avg score" $temp_result_file > $temp_clean_file python3 average.py $temp_clean_file $score_file # 清理临时文件 rm $wav_wav_text rm $temp_result_file rm $temp_clean_file