Upload 3 files
Browse files- buildmodel.py +47 -0
- findtool_model.pkl +3 -0
- vectorizer.pkl +3 -0
buildmodel.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from sklearn.model_selection import train_test_split
|
| 3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 4 |
+
from sklearn.naive_bayes import MultinomialNB
|
| 5 |
+
from sklearn.metrics import classification_report
|
| 6 |
+
import joblib
|
| 7 |
+
|
| 8 |
+
# Load the dataset from the txt file
|
| 9 |
+
data_path = 'trainingdata.txt'
|
| 10 |
+
data = []
|
| 11 |
+
|
| 12 |
+
# Read the file and parse the data
|
| 13 |
+
with open(data_path, 'r') as file:
|
| 14 |
+
lines = file.readlines()
|
| 15 |
+
for line in lines:
|
| 16 |
+
# Split each line into question and tool by the last comma
|
| 17 |
+
parts = line.rsplit(', "', 1)
|
| 18 |
+
if len(parts) == 2:
|
| 19 |
+
question = parts[0].strip().strip('"')
|
| 20 |
+
tool = parts[1].strip().strip('",')
|
| 21 |
+
data.append((question, tool))
|
| 22 |
+
|
| 23 |
+
# Create a DataFrame
|
| 24 |
+
df = pd.DataFrame(data, columns=['question', 'tool'])
|
| 25 |
+
|
| 26 |
+
# Split the data
|
| 27 |
+
X_train, X_test, y_train, y_test = train_test_split(df['question'], df['tool'], test_size=0.2, random_state=42)
|
| 28 |
+
|
| 29 |
+
# Vectorize the text data
|
| 30 |
+
vectorizer = TfidfVectorizer()
|
| 31 |
+
X_train_vectorized = vectorizer.fit_transform(X_train)
|
| 32 |
+
X_test_vectorized = vectorizer.transform(X_test)
|
| 33 |
+
|
| 34 |
+
# Train a Naive Bayes classifier
|
| 35 |
+
clf = MultinomialNB()
|
| 36 |
+
clf.fit(X_train_vectorized, y_train)
|
| 37 |
+
|
| 38 |
+
# Make predictions
|
| 39 |
+
y_pred = clf.predict(X_test_vectorized)
|
| 40 |
+
|
| 41 |
+
# Print the classification report
|
| 42 |
+
print(classification_report(y_test, y_pred))
|
| 43 |
+
|
| 44 |
+
# Save the model and vectorizer
|
| 45 |
+
joblib.dump(clf, 'findtool_model.pkl')
|
| 46 |
+
joblib.dump(vectorizer, 'vectorizer.pkl')
|
| 47 |
+
|
findtool_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22b7d40072e1758d51ba174901744926f38baf672342258d72b1742362436828
|
| 3 |
+
size 98439
|
vectorizer.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0d1c3a1559575978d012f36ac2144bd2ecd6dd8616c6f6b4e2d5a2e0fbc4b216
|
| 3 |
+
size 22618
|