drbh
commited on
Commit
·
6324f5a
1
Parent(s):
62efba7
feat: add quick start and readme example
Browse files- README.md +58 -0
- readme_example.py +47 -0
README.md
CHANGED
|
@@ -6,6 +6,64 @@ license: apache-2.0
|
|
| 6 |
|
| 7 |
This is an implementation of Flash Attention 3 CUDA kernels with support for attention sinks. The attention sinks implementation was contributed to Flash Attention by the [vLLM team](https://huggingface.co/vllm-project). The [transformers team](https://huggingface.co/transformers-community) packaged the implementation and pre-built it for use with the [kernels library](https://github.com/huggingface/kernels).
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
## How to Use
|
| 10 |
|
| 11 |
When loading your model with transformers, provide this repository id as the source of the attention implementation:
|
|
|
|
| 6 |
|
| 7 |
This is an implementation of Flash Attention 3 CUDA kernels with support for attention sinks. The attention sinks implementation was contributed to Flash Attention by the [vLLM team](https://huggingface.co/vllm-project). The [transformers team](https://huggingface.co/transformers-community) packaged the implementation and pre-built it for use with the [kernels library](https://github.com/huggingface/kernels).
|
| 8 |
|
| 9 |
+
|
| 10 |
+
## Quickstart
|
| 11 |
+
|
| 12 |
+
```bash
|
| 13 |
+
uv run https://huggingface.co/kernels-community/vllm-flash-attn3/raw/main/readme_example.py
|
| 14 |
+
```
|
| 15 |
+
|
| 16 |
+
```python
|
| 17 |
+
# /// script
|
| 18 |
+
# requires-python = ">=3.10"
|
| 19 |
+
# dependencies = [
|
| 20 |
+
# "torch",
|
| 21 |
+
# "triton",
|
| 22 |
+
# "numpy",
|
| 23 |
+
# "kernels",
|
| 24 |
+
# ]
|
| 25 |
+
# ///
|
| 26 |
+
|
| 27 |
+
import torch
|
| 28 |
+
from kernels import get_kernel
|
| 29 |
+
|
| 30 |
+
# Load vllm-flash-attn3 via kernels library
|
| 31 |
+
vllm_flash_attn3 = get_kernel("kernels-community/vllm-flash-attn3")
|
| 32 |
+
|
| 33 |
+
# Access Flash Attention function
|
| 34 |
+
flash_attn_func = vllm_flash_attn3.flash_attn_func
|
| 35 |
+
|
| 36 |
+
# Set device and seed for reproducibility
|
| 37 |
+
device = "cuda"
|
| 38 |
+
torch.manual_seed(42)
|
| 39 |
+
torch.cuda.manual_seed(42)
|
| 40 |
+
|
| 41 |
+
# Parameters
|
| 42 |
+
batch_size = 2
|
| 43 |
+
seqlen_q = 128 # Query sequence length
|
| 44 |
+
seqlen_k = 256 # Key sequence length
|
| 45 |
+
nheads = 8 # Number of attention heads
|
| 46 |
+
d = 64 # Head dimension
|
| 47 |
+
|
| 48 |
+
# Create input tensors (Q, K, V)
|
| 49 |
+
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=torch.bfloat16)
|
| 50 |
+
k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=torch.bfloat16)
|
| 51 |
+
v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=torch.bfloat16)
|
| 52 |
+
|
| 53 |
+
print(f"Query shape: {q.shape}")
|
| 54 |
+
print(f"Key shape: {k.shape}")
|
| 55 |
+
print(f"Value shape: {v.shape}")
|
| 56 |
+
|
| 57 |
+
# Run Flash Attention 3
|
| 58 |
+
output, lse = flash_attn_func(q, k, v, causal=True)
|
| 59 |
+
|
| 60 |
+
print(f"\nOutput shape: {output.shape}")
|
| 61 |
+
print(f"LSE (log-sum-exp) shape: {lse.shape}")
|
| 62 |
+
print(f"\nAttention computation successful!")
|
| 63 |
+
print(f"Output tensor stats - Mean: {output.mean().item():.4f}, Std: {output.std().item():.4f}")
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
|
| 67 |
## How to Use
|
| 68 |
|
| 69 |
When loading your model with transformers, provide this repository id as the source of the attention implementation:
|
readme_example.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "torch",
|
| 5 |
+
# "triton",
|
| 6 |
+
# "numpy",
|
| 7 |
+
# "kernels",
|
| 8 |
+
# ]
|
| 9 |
+
# ///
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from kernels import get_kernel
|
| 13 |
+
|
| 14 |
+
# Load vllm-flash-attn3 via kernels library
|
| 15 |
+
vllm_flash_attn3 = get_kernel("kernels-community/vllm-flash-attn3")
|
| 16 |
+
|
| 17 |
+
# Access Flash Attention function
|
| 18 |
+
flash_attn_func = vllm_flash_attn3.flash_attn_func
|
| 19 |
+
|
| 20 |
+
# Set device and seed for reproducibility
|
| 21 |
+
device = "cuda"
|
| 22 |
+
torch.manual_seed(42)
|
| 23 |
+
torch.cuda.manual_seed(42)
|
| 24 |
+
|
| 25 |
+
# Parameters
|
| 26 |
+
batch_size = 2
|
| 27 |
+
seqlen_q = 128 # Query sequence length
|
| 28 |
+
seqlen_k = 256 # Key sequence length
|
| 29 |
+
nheads = 8 # Number of attention heads
|
| 30 |
+
d = 64 # Head dimension
|
| 31 |
+
|
| 32 |
+
# Create input tensors (Q, K, V)
|
| 33 |
+
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=torch.bfloat16)
|
| 34 |
+
k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=torch.bfloat16)
|
| 35 |
+
v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=torch.bfloat16)
|
| 36 |
+
|
| 37 |
+
print(f"Query shape: {q.shape}")
|
| 38 |
+
print(f"Key shape: {k.shape}")
|
| 39 |
+
print(f"Value shape: {v.shape}")
|
| 40 |
+
|
| 41 |
+
# Run Flash Attention 3
|
| 42 |
+
output, lse = flash_attn_func(q, k, v, causal=True)
|
| 43 |
+
|
| 44 |
+
print(f"\nOutput shape: {output.shape}")
|
| 45 |
+
print(f"LSE (log-sum-exp) shape: {lse.shape}")
|
| 46 |
+
print(f"\nAttention computation successful!")
|
| 47 |
+
print(f"Output tensor stats - Mean: {output.mean().item():.4f}, Std: {output.std().item():.4f}")
|