update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
metrics:
|
| 6 |
+
- rouge
|
| 7 |
+
- bleu
|
| 8 |
+
model-index:
|
| 9 |
+
- name: Salesforce-codet5-small-CodeXGLUE-CONCODE-adafactor
|
| 10 |
+
results: []
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 14 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 15 |
+
|
| 16 |
+
# Salesforce-codet5-small-CodeXGLUE-CONCODE-adafactor
|
| 17 |
+
|
| 18 |
+
This model is a fine-tuned version of [Salesforce/codet5-small](https://huggingface.co/Salesforce/codet5-small) on an unknown dataset.
|
| 19 |
+
It achieves the following results on the evaluation set:
|
| 20 |
+
- Loss: 0.8118
|
| 21 |
+
- Exact Match: 0.1555
|
| 22 |
+
- Rouge1: 0.5580
|
| 23 |
+
- Rouge2: 0.3886
|
| 24 |
+
- Rougel: 0.5407
|
| 25 |
+
- Rougelsum: 0.5483
|
| 26 |
+
- Bleu: 0.1297
|
| 27 |
+
|
| 28 |
+
## Model description
|
| 29 |
+
|
| 30 |
+
More information needed
|
| 31 |
+
|
| 32 |
+
## Intended uses & limitations
|
| 33 |
+
|
| 34 |
+
More information needed
|
| 35 |
+
|
| 36 |
+
## Training and evaluation data
|
| 37 |
+
|
| 38 |
+
More information needed
|
| 39 |
+
|
| 40 |
+
## Training procedure
|
| 41 |
+
|
| 42 |
+
### Training hyperparameters
|
| 43 |
+
|
| 44 |
+
The following hyperparameters were used during training:
|
| 45 |
+
- learning_rate: 0.0003
|
| 46 |
+
- train_batch_size: 32
|
| 47 |
+
- eval_batch_size: 32
|
| 48 |
+
- seed: 42
|
| 49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 50 |
+
- lr_scheduler_type: linear
|
| 51 |
+
- lr_scheduler_warmup_ratio: 0.05
|
| 52 |
+
- num_epochs: 10
|
| 53 |
+
- mixed_precision_training: Native AMP
|
| 54 |
+
|
| 55 |
+
### Training results
|
| 56 |
+
|
| 57 |
+
| Training Loss | Epoch | Step | Validation Loss | Exact Match | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu |
|
| 58 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:------:|:------:|:------:|:---------:|:------:|
|
| 59 |
+
| 1.8525 | 0.16 | 500 | 0.9340 | 0.1435 | 0.5360 | 0.3596 | 0.5171 | 0.5238 | 0.1146 |
|
| 60 |
+
| 0.8679 | 0.32 | 1000 | 0.9262 | 0.1405 | 0.5385 | 0.3659 | 0.5228 | 0.5294 | 0.1179 |
|
| 61 |
+
| 0.8169 | 0.48 | 1500 | 0.8957 | 0.139 | 0.5372 | 0.3642 | 0.5192 | 0.5265 | 0.1135 |
|
| 62 |
+
| 0.7734 | 0.64 | 2000 | 0.8827 | 0.14 | 0.5485 | 0.3706 | 0.5316 | 0.5381 | 0.1210 |
|
| 63 |
+
| 0.743 | 0.8 | 2500 | 0.8647 | 0.155 | 0.5503 | 0.3833 | 0.5338 | 0.5411 | 0.1184 |
|
| 64 |
+
| 0.72 | 0.96 | 3000 | 0.8661 | 0.1545 | 0.5460 | 0.3735 | 0.5284 | 0.5366 | 0.1162 |
|
| 65 |
+
| 0.6539 | 1.12 | 3500 | 0.8591 | 0.156 | 0.5540 | 0.3841 | 0.5365 | 0.5444 | 0.1241 |
|
| 66 |
+
| 0.6301 | 1.28 | 4000 | 0.8452 | 0.1485 | 0.5556 | 0.3794 | 0.5369 | 0.5451 | 0.1237 |
|
| 67 |
+
| 0.6222 | 1.44 | 4500 | 0.8321 | 0.1585 | 0.5529 | 0.3818 | 0.5343 | 0.5430 | 0.1228 |
|
| 68 |
+
| 0.6221 | 1.6 | 5000 | 0.8317 | 0.154 | 0.5664 | 0.3925 | 0.5481 | 0.5575 | 0.1289 |
|
| 69 |
+
| 0.6067 | 1.76 | 5500 | 0.8228 | 0.1625 | 0.5607 | 0.3933 | 0.5438 | 0.5516 | 0.1299 |
|
| 70 |
+
| 0.5927 | 1.92 | 6000 | 0.8179 | 0.156 | 0.5625 | 0.3942 | 0.5457 | 0.5526 | 0.1309 |
|
| 71 |
+
| 0.5548 | 2.08 | 6500 | 0.8259 | 0.152 | 0.5582 | 0.3846 | 0.5402 | 0.5485 | 0.1314 |
|
| 72 |
+
| 0.5146 | 2.24 | 7000 | 0.8328 | 0.1545 | 0.5605 | 0.3889 | 0.5429 | 0.5514 | 0.1299 |
|
| 73 |
+
| 0.5193 | 2.4 | 7500 | 0.8197 | 0.1555 | 0.5604 | 0.3866 | 0.5431 | 0.5501 | 0.1268 |
|
| 74 |
+
| 0.5172 | 2.56 | 8000 | 0.8118 | 0.1555 | 0.5580 | 0.3886 | 0.5407 | 0.5483 | 0.1297 |
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
### Framework versions
|
| 78 |
+
|
| 79 |
+
- Transformers 4.27.1
|
| 80 |
+
- Pytorch 1.12.1+cu113
|
| 81 |
+
- Datasets 2.10.1
|
| 82 |
+
- Tokenizers 0.13.2
|