File size: 1,146 Bytes
abd2878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
license: cc-by-4.0
language:
  - en
  - es
  - fr
  - de
  - bg
  - hr
  - cs
  - da
  - nl
  - et
  - fi
  - el
  - hu
  - it
  - lv
  - lt
  - mt
  - pl
  - pt
  - ro
  - sk
  - sl
  - sv
  - ru
  - uk
base_model:
- nvidia/parakeet-tdt-0.6b-v3
pipeline_tag: automatic-speech-recognition
---

NVIDIA Parakeet TDT 0.6B V3 (Multilingual) [model](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v3) converted to ONNX format for [onnx-asr](https://github.com/istupakov/onnx-asr).

Install onnx-asr
```shell
pip install onnx-asr[cpu,hub]
```

Load Parakeet TDT model and recognize wav file
```py
import onnx_asr
model = onnx_asr.load_model("nemo-parakeet-tdt-0.6b-v3")
print(model.recognize("test.wav"))
```

Code for models export
```py
import nemo.collections.asr as nemo_asr
from pathlib import Path

model = nemo_asr.models.ASRModel.from_pretrained("nvidia/parakeet-tdt-0.6b-v3")

onnx_dir = Path("nemo-onnx")
onnx_dir.mkdir(exist_ok=True)
model.export(str(Path(onnx_dir, "model.onnx")))

with Path(onnx_dir, "vocab.txt").open("wt") as f:
    for i, token in enumerate([*model.tokenizer.vocab, "<blk>"]):
        f.write(f"{token} {i}\n")
```