Update modeling_mmMamba.py
Browse files- modeling_mmMamba.py +93 -7
modeling_mmMamba.py
CHANGED
|
@@ -24,22 +24,20 @@ import torch.nn.functional as F
|
|
| 24 |
import torch.utils.checkpoint
|
| 25 |
from einops import rearrange
|
| 26 |
from torch import nn
|
| 27 |
-
from torch.nn import
|
| 28 |
from transformers.activations import ACT2FN
|
| 29 |
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
| 30 |
-
CausalLMOutputWithPast
|
| 31 |
-
SequenceClassifierOutputWithPast)
|
| 32 |
from transformers.modeling_utils import PreTrainedModel
|
| 33 |
from transformers.utils import (add_start_docstrings,
|
| 34 |
add_start_docstrings_to_model_forward, logging,
|
| 35 |
replace_return_docstrings)
|
| 36 |
-
from
|
| 37 |
-
|
| 38 |
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined
|
| 39 |
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
| 40 |
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
| 41 |
-
|
| 42 |
-
import time
|
| 43 |
|
| 44 |
try:
|
| 45 |
from transformers.generation.streamers import BaseStreamer
|
|
@@ -130,6 +128,94 @@ class mmMambaRMSNorm(nn.Module):
|
|
| 130 |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 131 |
return self.weight * hidden_states.to(input_dtype)
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
class mmMambaMLP(nn.Module):
|
| 134 |
def __init__(self, config):
|
| 135 |
super().__init__()
|
|
|
|
| 24 |
import torch.utils.checkpoint
|
| 25 |
from einops import rearrange
|
| 26 |
from torch import nn
|
| 27 |
+
from torch.nn import CrossEntropyLoss
|
| 28 |
from transformers.activations import ACT2FN
|
| 29 |
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
| 30 |
+
CausalLMOutputWithPast)
|
|
|
|
| 31 |
from transformers.modeling_utils import PreTrainedModel
|
| 32 |
from transformers.utils import (add_start_docstrings,
|
| 33 |
add_start_docstrings_to_model_forward, logging,
|
| 34 |
replace_return_docstrings)
|
| 35 |
+
from fused_norm_gate import FusedRMSNormSwishGate
|
| 36 |
+
|
| 37 |
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined
|
| 38 |
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
| 39 |
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
| 40 |
+
|
|
|
|
| 41 |
|
| 42 |
try:
|
| 43 |
from transformers.generation.streamers import BaseStreamer
|
|
|
|
| 128 |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 129 |
return self.weight * hidden_states.to(input_dtype)
|
| 130 |
|
| 131 |
+
|
| 132 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->mmMamba
|
| 133 |
+
class mmMambaRotaryEmbedding(nn.Module):
|
| 134 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 135 |
+
super().__init__()
|
| 136 |
+
|
| 137 |
+
self.dim = dim
|
| 138 |
+
self.max_position_embeddings = max_position_embeddings
|
| 139 |
+
self.base = base
|
| 140 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 141 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
| 142 |
+
|
| 143 |
+
# Build here to make `torch.jit.trace` work.
|
| 144 |
+
self._set_cos_sin_cache(
|
| 145 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 149 |
+
self.max_seq_len_cached = seq_len
|
| 150 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 151 |
+
|
| 152 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 153 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 154 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 155 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 156 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 157 |
+
|
| 158 |
+
def forward(self, x, seq_len=None):
|
| 159 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 160 |
+
if seq_len > self.max_seq_len_cached:
|
| 161 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
| 162 |
+
|
| 163 |
+
return (
|
| 164 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
| 165 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->mmMamba
|
| 170 |
+
class mmMambaLinearScalingRotaryEmbedding(mmMambaRotaryEmbedding):
|
| 171 |
+
"""mmMambaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 172 |
+
|
| 173 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 174 |
+
self.scaling_factor = scaling_factor
|
| 175 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 176 |
+
|
| 177 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 178 |
+
self.max_seq_len_cached = seq_len
|
| 179 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 180 |
+
t = t / self.scaling_factor
|
| 181 |
+
|
| 182 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 183 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 184 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 185 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 186 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->mmMamba
|
| 190 |
+
class mmMambaDynamicNTKScalingRotaryEmbedding(mmMambaRotaryEmbedding):
|
| 191 |
+
"""mmMambaRotaryEmbedding extended with Dynamic NTK scaling.
|
| 192 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
| 193 |
+
"""
|
| 194 |
+
|
| 195 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 196 |
+
self.scaling_factor = scaling_factor
|
| 197 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 198 |
+
|
| 199 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 200 |
+
self.max_seq_len_cached = seq_len
|
| 201 |
+
|
| 202 |
+
if seq_len > self.max_position_embeddings:
|
| 203 |
+
base = self.base * (
|
| 204 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 205 |
+
) ** (self.dim / (self.dim - 2))
|
| 206 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 207 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
| 208 |
+
|
| 209 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 210 |
+
|
| 211 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 212 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 213 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 214 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 215 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
|
| 219 |
class mmMambaMLP(nn.Module):
|
| 220 |
def __init__(self, config):
|
| 221 |
super().__init__()
|