Update README.md
Browse files
README.md
CHANGED
|
@@ -58,4 +58,273 @@ Example QA:
|
|
| 58 |
- Training diagnostic QA systems for auscultation sounds
|
| 59 |
- Benchmarking audio-language models in healthcare
|
| 60 |
- Studying generalization across unseen respiratory/cardiac datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
|
|
|
| 58 |
- Training diagnostic QA systems for auscultation sounds
|
| 59 |
- Benchmarking audio-language models in healthcare
|
| 60 |
- Studying generalization across unseen respiratory/cardiac datasets
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
---
|
| 64 |
+
license: <!-- [CUSTOMIZE THIS] Dataset license, e.g. "cc-by-4.0", "cc-by-sa-4.0", "apache-2.0", "mit", etc. -->
|
| 65 |
+
language:
|
| 66 |
+
- <!-- [CUSTOMIZE THIS] Primary language of the dataset, e.g. "en", "zh", "multilingual" -->
|
| 67 |
+
multilinguality:
|
| 68 |
+
- <!-- [CUSTOMIZE THIS] Whether the dataset is monolingual, multilingual, or translation, e.g. "monolingual", "multilingual", "translation" -->
|
| 69 |
+
size_categories:
|
| 70 |
+
- <!-- [CUSTOMIZE THIS] Size category of the dataset, e.g. "10K<n<100K", "100K<n<1M", "1M<n<10M", etc. -->
|
| 71 |
+
source_datasets:
|
| 72 |
+
- <!-- [CUSTOMIZE THIS] Source of the dataset, e.g. "original", "extended", "derived" -->
|
| 73 |
+
task_categories:
|
| 74 |
+
- <!-- [CUSTOMIZE THIS] Task categories, e.g. "text-classification", "question-answering", "image-classification", etc. -->
|
| 75 |
+
task_ids:
|
| 76 |
+
- <!-- [CUSTOMIZE THIS] Specific task IDs, e.g. "sentiment-classification", "topic-classification", etc. -->
|
| 77 |
+
paperswithcode_id: <!-- [CUSTOMIZE THIS] Optional: paperswithcode ID if applicable -->
|
| 78 |
+
dataset_info:
|
| 79 |
+
features:
|
| 80 |
+
- name: <!-- [CUSTOMIZE THIS] Feature name, e.g. "text" -->
|
| 81 |
+
dtype: <!-- [CUSTOMIZE THIS] Data type, e.g. "string" -->
|
| 82 |
+
- name: <!-- [CUSTOMIZE THIS] Feature name, e.g. "label" -->
|
| 83 |
+
dtype: <!-- [CUSTOMIZE THIS] Data type, e.g. "int64" -->
|
| 84 |
+
# Add more features as needed
|
| 85 |
+
config_name: <!-- [CUSTOMIZE THIS] Configuration name, e.g. "default" -->
|
| 86 |
+
splits:
|
| 87 |
+
- name: train
|
| 88 |
+
num_examples: <!-- [CUSTOMIZE THIS] Number of examples in train split, e.g. 8000 -->
|
| 89 |
+
- name: validation
|
| 90 |
+
num_examples: <!-- [CUSTOMIZE THIS] Number of examples in validation split, e.g. 1000 -->
|
| 91 |
+
- name: test
|
| 92 |
+
num_examples: <!-- [CUSTOMIZE THIS] Number of examples in test split, e.g. 1000 -->
|
| 93 |
+
pretty_name: <!-- [CUSTOMIZE THIS] A human-readable name for the dataset -->
|
| 94 |
+
---
|
| 95 |
+
|
| 96 |
+
# <!-- [CUSTOMIZE THIS] Dataset Name -->
|
| 97 |
+
|
| 98 |
+
## Dataset Description
|
| 99 |
+
|
| 100 |
+
### Dataset Summary
|
| 101 |
+
|
| 102 |
+
<!-- [CUSTOMIZE THIS] Provide a short introduction to the dataset, including:
|
| 103 |
+
- What is this dataset about?
|
| 104 |
+
- What tasks does it support?
|
| 105 |
+
- How was it created?
|
| 106 |
+
- What makes it unique or valuable? -->
|
| 107 |
+
|
| 108 |
+
### Supported Tasks and Leaderboards
|
| 109 |
+
|
| 110 |
+
<!-- [CUSTOMIZE THIS] Describe the tasks this dataset supports:
|
| 111 |
+
- What tasks can be performed on this dataset? (e.g., classification, Q&A, etc.)
|
| 112 |
+
- Are there leaderboards associated with this dataset?
|
| 113 |
+
- What metrics are appropriate for evaluating models on this dataset? -->
|
| 114 |
+
|
| 115 |
+
### Languages
|
| 116 |
+
|
| 117 |
+
<!-- [CUSTOMIZE THIS] Specify the languages used in the dataset and any relevant language-specific information -->
|
| 118 |
+
|
| 119 |
+
## Dataset Structure
|
| 120 |
+
|
| 121 |
+
### Data Instances
|
| 122 |
+
|
| 123 |
+
<!-- [CUSTOMIZE THIS] Provide examples of data instances from the dataset. Include:
|
| 124 |
+
- A description of what each instance represents
|
| 125 |
+
- One or more concrete examples in JSON or dictionary format -->
|
| 126 |
+
|
| 127 |
+
```python
|
| 128 |
+
# Example data instance
|
| 129 |
+
{
|
| 130 |
+
'feature1': 'value1',
|
| 131 |
+
'feature2': 'value2',
|
| 132 |
+
'label': 0
|
| 133 |
+
}
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
### Data Fields
|
| 137 |
+
|
| 138 |
+
<!-- [CUSTOMIZE THIS] Describe all data fields, including:
|
| 139 |
+
- Field name
|
| 140 |
+
- Data type
|
| 141 |
+
- Description of what the field represents
|
| 142 |
+
- For categorical fields, the possible values and their meanings -->
|
| 143 |
+
|
| 144 |
+
- `feature1`: a `string` feature representing <!-- description -->
|
| 145 |
+
- `feature2`: a `string` feature representing <!-- description -->
|
| 146 |
+
- `label`: a `int64` classification label, with 0 indicating <!-- meaning --> and 1 indicating <!-- meaning -->
|
| 147 |
+
|
| 148 |
+
### Data Splits
|
| 149 |
+
|
| 150 |
+
<!-- [CUSTOMIZE THIS] Describe how the data is split:
|
| 151 |
+
- Number of instances in each split (train/validation/test)
|
| 152 |
+
- Criteria used for splitting the data
|
| 153 |
+
- Whether the splits are balanced or representative -->
|
| 154 |
+
|
| 155 |
+
## Dataset Creation
|
| 156 |
+
|
| 157 |
+
### Curation Rationale
|
| 158 |
+
|
| 159 |
+
<!-- [CUSTOMIZE THIS] Explain why this dataset was created:
|
| 160 |
+
- What need does it address?
|
| 161 |
+
- What gaps in existing datasets does it fill?
|
| 162 |
+
- What research questions was it designed to help answer? -->
|
| 163 |
+
|
| 164 |
+
### Source Data
|
| 165 |
+
|
| 166 |
+
#### Initial Data Collection and Normalization
|
| 167 |
+
|
| 168 |
+
<!-- [CUSTOMIZE THIS] Describe how the initial data was collected:
|
| 169 |
+
- What sources were used?
|
| 170 |
+
- What collection process was followed?
|
| 171 |
+
- How was the data normalized or standardized? -->
|
| 172 |
+
|
| 173 |
+
#### Who are the source language producers?
|
| 174 |
+
|
| 175 |
+
<!-- [CUSTOMIZE THIS] Describe who produced the original data:
|
| 176 |
+
- Was it written/created by professionals, crowdworkers, experts in a domain?
|
| 177 |
+
- Is it from a specific demographic or community?
|
| 178 |
+
- What motivated the original authors/speakers? -->
|
| 179 |
+
|
| 180 |
+
### Annotations
|
| 181 |
+
|
| 182 |
+
#### Annotation process
|
| 183 |
+
|
| 184 |
+
<!-- [CUSTOMIZE THIS] If the dataset includes annotations, describe:
|
| 185 |
+
- How annotations were created (expert labeling, crowdsourcing, etc.)
|
| 186 |
+
- Annotation guidelines provided to annotators
|
| 187 |
+
- Quality control measures -->
|
| 188 |
+
|
| 189 |
+
#### Who are the annotators?
|
| 190 |
+
|
| 191 |
+
<!-- [CUSTOMIZE THIS] Describe who performed the annotations:
|
| 192 |
+
- Professional annotators, crowdworkers, domain experts?
|
| 193 |
+
- Demographic information if relevant
|
| 194 |
+
- How were annotators compensated? -->
|
| 195 |
+
|
| 196 |
+
### Personal and Sensitive Information
|
| 197 |
+
|
| 198 |
+
<!-- [CUSTOMIZE THIS] Describe handling of personal information:
|
| 199 |
+
- Does the dataset contain personal information?
|
| 200 |
+
- What steps were taken to protect privacy?
|
| 201 |
+
- Were individuals notified or did they consent to data collection? -->
|
| 202 |
+
|
| 203 |
+
## Considerations for Using the Data
|
| 204 |
+
|
| 205 |
+
### Social Impact of Dataset
|
| 206 |
+
|
| 207 |
+
<!-- [CUSTOMIZE THIS] Consider the social impact:
|
| 208 |
+
- How might this dataset benefit society?
|
| 209 |
+
- Are there potential risks or harms from using this dataset?
|
| 210 |
+
- Are there specific applications that should be encouraged or discouraged? -->
|
| 211 |
+
|
| 212 |
+
### Discussion of Biases
|
| 213 |
+
|
| 214 |
+
<!-- [CUSTOMIZE THIS] Discuss potential biases:
|
| 215 |
+
- What biases might be present in the data?
|
| 216 |
+
- How might these biases affect models trained on this data?
|
| 217 |
+
- What steps were taken to mitigate biases? -->
|
| 218 |
+
|
| 219 |
+
### Other Known Limitations
|
| 220 |
+
|
| 221 |
+
<!-- [CUSTOMIZE THIS] Describe any other limitations:
|
| 222 |
+
- Coverage limitations
|
| 223 |
+
- Technical limitations
|
| 224 |
+
- Areas where the dataset may not perform well -->
|
| 225 |
+
|
| 226 |
+
## Additional Information
|
| 227 |
+
|
| 228 |
+
### Dataset Curators
|
| 229 |
+
|
| 230 |
+
<!-- [CUSTOMIZE THIS] Information about the dataset curators:
|
| 231 |
+
- Who created this dataset?
|
| 232 |
+
- Institutional affiliations
|
| 233 |
+
- Contact information if appropriate -->
|
| 234 |
+
|
| 235 |
+
### Licensing Information
|
| 236 |
+
|
| 237 |
+
<!-- [CUSTOMIZE THIS] Detail the licensing:
|
| 238 |
+
- What license covers this dataset?
|
| 239 |
+
- Any restrictions on use
|
| 240 |
+
- Attribution requirements -->
|
| 241 |
+
|
| 242 |
+
### Citation Information
|
| 243 |
+
|
| 244 |
+
<!-- [CUSTOMIZE THIS] Provide citation information:
|
| 245 |
+
- How should this dataset be cited?
|
| 246 |
+
- BibTeX citation -->
|
| 247 |
+
|
| 248 |
+
```
|
| 249 |
+
@inproceedings{
|
| 250 |
+
author = {Author1 LastName, Author2 LastName},
|
| 251 |
+
title = {Dataset Title},
|
| 252 |
+
booktitle = {Conference or Journal Name},
|
| 253 |
+
year = {20XX},
|
| 254 |
+
url = {URL to paper or dataset}
|
| 255 |
+
}
|
| 256 |
+
```
|
| 257 |
+
|
| 258 |
+
### Contributions
|
| 259 |
+
|
| 260 |
+
<!-- [CUSTOMIZE THIS] Acknowledge contributions:
|
| 261 |
+
- Who contributed to this dataset card?
|
| 262 |
+
- Thanks to reviewers or other contributors -->
|
| 263 |
+
|
| 264 |
+
## How to Use
|
| 265 |
+
|
| 266 |
+
### Loading the Dataset
|
| 267 |
+
|
| 268 |
+
```python
|
| 269 |
+
# Example code to load the dataset
|
| 270 |
+
from datasets import load_dataset
|
| 271 |
+
|
| 272 |
+
dataset = load_dataset("username/dataset_name")
|
| 273 |
+
|
| 274 |
+
# Access splits
|
| 275 |
+
train_data = dataset["train"]
|
| 276 |
+
validation_data = dataset["validation"]
|
| 277 |
+
test_data = dataset["test"]
|
| 278 |
+
|
| 279 |
+
# Example usage
|
| 280 |
+
for example in train_data.select(range(3)):
|
| 281 |
+
print(example)
|
| 282 |
+
```
|
| 283 |
+
|
| 284 |
+
### Example Preprocessing and Training
|
| 285 |
+
|
| 286 |
+
```python
|
| 287 |
+
# Example preprocessing and model training code
|
| 288 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
| 289 |
+
|
| 290 |
+
# Load tokenizer and tokenize data
|
| 291 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 292 |
+
|
| 293 |
+
def tokenize_function(examples):
|
| 294 |
+
return tokenizer(examples["feature1"], padding="max_length", truncation=True)
|
| 295 |
+
|
| 296 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
| 297 |
+
|
| 298 |
+
# Define model
|
| 299 |
+
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
|
| 300 |
+
|
| 301 |
+
# Define training arguments
|
| 302 |
+
training_args = TrainingArguments(
|
| 303 |
+
output_dir="./results",
|
| 304 |
+
per_device_train_batch_size=16,
|
| 305 |
+
per_device_eval_batch_size=16,
|
| 306 |
+
num_train_epochs=3,
|
| 307 |
+
evaluation_strategy="epoch",
|
| 308 |
+
save_strategy="epoch",
|
| 309 |
+
load_best_model_at_end=True,
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
# Define trainer
|
| 313 |
+
trainer = Trainer(
|
| 314 |
+
model=model,
|
| 315 |
+
args=training_args,
|
| 316 |
+
train_dataset=tokenized_dataset["train"],
|
| 317 |
+
eval_dataset=tokenized_dataset["validation"],
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
# Train model
|
| 321 |
+
trainer.train()
|
| 322 |
+
```
|
| 323 |
+
|
| 324 |
+
### Community and Support
|
| 325 |
+
|
| 326 |
+
<!-- [CUSTOMIZE THIS] Information on how to get help with the dataset:
|
| 327 |
+
- Links to community forums
|
| 328 |
+
- Ways to report issues or contribute improvements
|
| 329 |
+
- Contact information for maintainers -->
|
| 330 |
|